Home
Class 12
MATHS
Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2...

Solve: `tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of xtan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve : tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)