Home
Class 11
MATHS
lim(x->-2)(1/x+1/2)/(x+2)...

`lim_(x->-2)(1/x+1/2)/(x+2)`

Text Solution

AI Generated Solution

To solve the limit \( \lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x + 2} \), we can follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = -2 \) into the expression to check if it results in an indeterminate form: \[ \frac{\frac{1}{-2} + \frac{1}{2}}{-2 + 2} = \frac{-\frac{1}{2} + \frac{1}{2}}{0} = \frac{0}{0} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to -2)(1/x+1/2)/(x+2)

Evaluate the following limits in lim_(x to -2)(1/x+1/2)/(x+2) .

[lim_(x->2) (3x + 1)]^2

lim_(xrarr-2)((1)/(x)+(1)/(2))/(x+2)

lim_(x->0) (x^2-3x+1)/(x-1)

If A=lim_(xrarr-2)(tanpix)/(x+2)+lim_(xrarroo)(1+(1)/(x^(2)))^(x) , then

Show that lim_(x rarr2)[(1)/(x-2)-(1)/(x^(2)-3x+2)]=

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

lim_(x rarr-(1)/(2))(2x^(2)-3x+1)/(2x-1)=

lim_(xtooo)((x+1)/(x+2))^(2x+1) is