Home
Class 10
MATHS
cos A cos2A cos4A cos8A=(sin16A)/(16*sin...

cos A cos2A cos4A cos8A=(sin16A)/(16*sin A)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos A cos 2A cos 4A cos 8A= (sin 16A)/(16 sin A) .

If A is not an integral multiple of (pi) , prove that cos A cos 2A cos 4A cos 8A =(sin 16A)/(16 sin A) Hence deduce that cos. (2pi)/(15). Cos. (4pi)/(15) .cos. (8pi)/(18). Cos. (16pi)/(15)=(1)/(16)

prove that cos x cos2x cos4x cos8x=(sin16x)/(16sin x)

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

cos A * cos2A * cos4A * cos8A * cos16A * cos32A = (sin (64A)) / (64sin A)

Prove that: (cos 2A cos 3A -cos 2A cos 7A + cos A cos 10A)/("sin" 4A sin 3A - sin 2A sin 5A + sin 4A sin 7A) = cot 6A cot 5A

Prove that: (cos 2A cos 3A-cos 2A cos 7A + cos A cos 10A)/(sin 4A sin 3A -sin 2A sin 5A + sin 4A sin 7A)= cot 6A cot 5A .

(cos2A cos3A-cos2A cos7A+cos A cos10A)/(sin4A sin3A-sin2A sin5A+sin4A sin7A)=cot6A*cot5A

(cos2A cos3A-cos2A cos7A+cos A cos10A)/(sin4A sin3A-sin2A sin5A+sin4A sin7A)=cot6A cot5A

Show that (cos 8 A cos 5A - cos 12 A cos 9A )/( sin 8 A cos 5A + cos 12 A sin 9A ) = tan 4A