Home
Class 12
MATHS
If x+y+z=0, show that : cot(x+y-z) cot (...

If `x+y+z=0`, show that :` cot(x+y-z) cot (z+x-y) +(cot(x+y-z) cot (y+z-x)+cot(y+z-x) cot (z+x-y)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=0 then cot(x+z-y),cot(x+y-z)+cot(x+y-z),cot(y+z-x)+cot(y+z-x)*cot(z+x-y)=

Show that cot (x-y)=(cot x cot y+1)/(cot y-cot x)

If tan^(2)z= tan (x+y) tan (x-y) , show that cot^(2)y+ cot (z+x) cot (z-x)=0

Show that : (x-y) (x+y) +(y-z)(y+z)+(z-x)(z+x)=0.

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If cot^(2)x =cot(x-y) cot(x-z) , then cot(2x) is equal to (where x ne +-pi/4 )

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot