Home
Class 11
MATHS
prove that (tantheta)^2+sec(2theta)=1...

prove that `(tantheta)^2+sec(2theta)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (tantheta)/(sectheta -1) = (tan theta + sec theta + 1)/(tan theta + sec theta -1)

Prove that tantheta(1+sec2theta)=tan2theta

Prove that : (tantheta+2)(2tantheta+1)=5tantheta+2sec^(2)theta

Prove that (tan^3theta-1)/(tantheta-1)=sec^2theta+tantheta .

Prove that tan2^ntheta/(tantheta) =(1+sec2theta)(1+sec2^2theta) ....(1+sec2^ntheta)

Prove that (1+sec2theta)(1+sec4theta)(1+sec8theta)=(tan8theta)/(tantheta)

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

Prove that (1+tan^2theta)sinthetacostheta=tantheta .