Home
Class 12
MATHS
If the lines (x-1)/(-3)=(y-2)/(-2y)=(z-3...

If the lines `(x-1)/(-3)=(y-2)/(-2y)=(z-3)/2` and `(x-1)/k=(y-2)/1-(z-3)/5` are perpendicular, find the value of `k` and hence find the equation of plane containing these lines.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines (x-1)/(-3)=(y-2)/(-2k)=(z-3)/2 and (x-1)/k=(y-2)/1=(z-3)/5 are perpendicular, find the value of k and hence find the equation of plane containing these lines.

If the lines: (x-1)/-3=(y-2)/(-2k)=(z-3)/2 and (x-1)/k=(y-2)/1=(z-3)/5 are perpendicular, find the values of k and hence find the equation of plane containing these lines.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-5) are perpendicular, find the value of k.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2) and (x-1)/(3k)=(y-1)/(1)=(z-6)/(-5) are perpendicular, find the value of k.

If the lines (x-1)/(-3) =(y-2)/(2k) =(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-5) are perpendicular , find the value of k .

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2) and (x-1)/(3k)=(y-1)/(1)=(z-6)/(-5) are perpendicular, find the value of k.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-3) are perpendicular, find the value of k.

If the lines (x-1)/-3 = (y-2)/2k = (z-3)/2 and (x-1)/3k = (y-1)/1 = (z-6)/-5 are perpendicular, find the value of k

If the lines: (x-1)/(3k)=(y-2)/(2)=(z+3)/1 and (x-1)/(2)=(y-1)/(k)=(z-6)/-5 are perpendicular, find the values of k.