Home
Class 11
MATHS
If u = 3t^(4) - 5t^(3) + 2t^(2) - 18t+4...

If `u = 3t^(4) - 5t^(3) + 2t^(2) - 18t+4`, find `(du)/(dt)` at `t = 1`.

Text Solution

AI Generated Solution

To find \(\frac{du}{dt}\) for the function \(u = 3t^4 - 5t^3 + 2t^2 - 18t + 4\) at \(t = 1\), we will follow these steps: ### Step 1: Differentiate the function \(u\) We will use the power rule of differentiation, which states that \(\frac{d}{dt}(t^n) = n \cdot t^{n-1}\). 1. Differentiate \(3t^4\): \[ \frac{d}{dt}(3t^4) = 3 \cdot 4t^{4-1} = 12t^3 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Given s=t^(2)+5t+3 , find (ds)/(dt)

1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(dx) at t=1 .

Knowledge Check

  • Let the function y = f(x) be given by x= t^(5) -5t^(3) -20t +7 and y= 4t^(3) -3t^(2) -18t + 3 where t in ( -2,2) then f'(x) at t = 1 is

    A
    ` 5/2 `
    B
    `2/5`
    C
    `7/5`
    D
    `5/7`
  • If v = 3t^2 - 2t + 1 , find the value of t for which (dv)/(dt) = 0

    A
    `1/3`
    B
    `2/3`
    C
    `3/2`
    D
    none
  • If S=(t^(3))/(3)-2t^(2)+3t+4 , then

    A
    at t = 1 , S is minimum
    B
    at t = 1 , S is maximum
    C
    at t = 3 , S is maximum
    D
    at t = 2 , S is minimum
  • Similar Questions

    Explore conceptually related problems

    Given u=7t^(4)-2t^(3)-8t-5, " find " (du)/(dt) . Hence, find (du)/(dt) at t = 0, 1, 2.

    Given that s=t^(2)+2t+3 . Find (ds)/(dt) .

    Subtract : 3t ^(4) - 4t ^(3) + 2t ^(2) - 6t + 6 from - 4t ^(4) + 8t ^(3) - 4t ^(2) - 2t + 11

    if u=(2bt)/(1+t^(2)),v=a(1-t^(2))/(1+t^(2)) then (du)/(dv)

    If s=(t^(3))/(3)-(1)/(2)t^(2)-6t+5 , Find the value of (d^(2)s)/(dt^(2)) at t=1