Home
Class 11
MATHS
If y=(1)/(sqrt(a^(2)-x^(2)), find (dy)/(...

If `y=(1)/(sqrt(a^(2)-x^(2))`, find `(dy)/(dx)`.

Text Solution

Verified by Experts

Put `(a^(2) - x^(2)) = t`,so that `y = (1)/(sqrt(t)) = t^(-1//2)` and `t = (a^(2) - x^(2))`.
`:. (dy)/(dt) = - 1/2 t^(-3//2)` and `(dt)/(dx) = - 2x`.
So, `(dy)/(dx) = ((dy)/(dt) xx (dt)/(dx))`
`= (-1/2 t^(-3//2)) (-2x) = xt^(-3//2) = x(a^(2) -x^(2))^(-3//2)`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), find (dy)/(dx).

y=ln(x+sqrt(x^(2)+a^(2))). Find (dy)/(dx)

If y=log(x+sqrt(x^(2)+a^(2)) then find (dy)/(dx)

y=sqrt(x^(2)+1)-log((1)/(x)+sqrt(1+(1)/(x^(2)))), find (dy)/(dx)

If y=x^(tan x)+sqrt((x^(2)+1)/(2)),find(dy)/(dx)

If y=x^(tan x)+sqrt((x^(2)+1)/(2)), find (dy)/(dx)

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

y=log[(x+sqrt(x^(2)+25))/(sqrt(x^(2)+25)-x)], find (dy)/(dx)

If y=sqrt((1-x)/(1+x)), find (dy)/(dx) and prove that (1-x^(2))(dy)/(dx)+y=0