Home
Class 11
MATHS
If y=cos^(2)x^(2), find (dy)/(dx)....

If `y=cos^(2)x^(2)`, find `(dy)/(dx)`.

Text Solution

Verified by Experts

`y = (cos x^(2))^(2)`. Put `x^(2) = t` and `cosx^(2) = cos t = u`, so that
`y = u^(2), u = cost ` and `t = x^(2)`
`:. (dy)/(du) = 2u, (du)/(dt) = - sint` and `(dt)/(dx) = 2x`.
So, `(dy)/(dx) = ((dy)/(du) xx (du)/(dt) xx (dt)/(dx))`
`= - 4ux sin t = - 4x sint cos t [ :' u = cos t]`
`= - 4x sin x^(2) cos x^(2) = -2x sin (2x^(2)) [:' t = x^(2)]`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

If y=sin(cos x^(2)) , find (dy)/(dx)

If y=cos x^(2) , then find (dy)/(dx) .

If y=cos^(2) x , then find (dy)/(dx) .

If y=cos^(2)x^(3) then find (dy/dx) .

y=(1)/(x^(2)) , find (dy)/(dx)

If y=e^(-x^(2)), then find (dy)/(dx) .

If y=cos^2x , then find (dy)/(dx) .

If y = cos^(2) x^(3) " then "(dy)/(dx) = ?