Home
Class 11
MATHS
(i) 4x^(3) + 3.2^(x) + 6.root8(x^(-4)) ...

(i) ` 4x^(3) + 3.2^(x) + 6.root8(x^(-4)) + 5 cot x` (ii) ` x/3 -3/x +sqrtx - 1/sqrtx + x^(2) -2^(x) +6x^(-2//3) -2/3 x^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivatives of the given functions, we will apply the rules of differentiation step by step. ### Part (i): Differentiate \( 4x^3 + 3 \cdot 2^x + 6 \cdot \sqrt[8]{x^{-4}} + 5 \cot x \) 1. **Differentiate \( 4x^3 \)**: \[ \frac{d}{dx}(4x^3) = 4 \cdot 3x^{3-1} = 12x^2 \] 2. **Differentiate \( 3 \cdot 2^x \)**: \[ \frac{d}{dx}(3 \cdot 2^x) = 3 \cdot 2^x \cdot \log(2) \] 3. **Differentiate \( 6 \cdot \sqrt[8]{x^{-4}} \)**: Rewrite \( \sqrt[8]{x^{-4}} \) as \( 6 \cdot x^{-4/8} = 6 \cdot x^{-1/2} \). \[ \frac{d}{dx}(6 \cdot x^{-1/2}) = 6 \cdot \left(-\frac{1}{2}x^{-3/2}\right) = -3x^{-3/2} \] 4. **Differentiate \( 5 \cot x \)**: \[ \frac{d}{dx}(5 \cot x) = 5 \cdot (-\csc^2 x) = -5 \csc^2 x \] 5. **Combine all the derivatives**: \[ f'(x) = 12x^2 + 3 \cdot 2^x \cdot \log(2) - 3x^{-3/2} - 5 \csc^2 x \] ### Final Result for Part (i): \[ f'(x) = 12x^2 + 3 \cdot 2^x \cdot \log(2) - 3x^{-3/2} - 5 \csc^2 x \] --- ### Part (ii): Differentiate \( \frac{x}{3} - \frac{3}{x} + \sqrt{x} - \frac{1}{\sqrt{x}} + x^2 - 2^x + 6x^{-2/3} - \frac{2}{3}x^6 \) 1. **Differentiate \( \frac{x}{3} \)**: \[ \frac{d}{dx}\left(\frac{x}{3}\right) = \frac{1}{3} \] 2. **Differentiate \( -\frac{3}{x} \)**: Rewrite as \( -3x^{-1} \). \[ \frac{d}{dx}(-3x^{-1}) = 3x^{-2} \] 3. **Differentiate \( \sqrt{x} \)**: Rewrite as \( x^{1/2} \). \[ \frac{d}{dx}(x^{1/2}) = \frac{1}{2}x^{-1/2} \] 4. **Differentiate \( -\frac{1}{\sqrt{x}} \)**: Rewrite as \( -x^{-1/2} \). \[ \frac{d}{dx}(-x^{-1/2}) = \frac{1}{2}x^{-3/2} \] 5. **Differentiate \( x^2 \)**: \[ \frac{d}{dx}(x^2) = 2x \] 6. **Differentiate \( -2^x \)**: \[ \frac{d}{dx}(-2^x) = -2^x \cdot \log(2) \] 7. **Differentiate \( 6x^{-2/3} \)**: \[ \frac{d}{dx}(6x^{-2/3}) = 6 \cdot \left(-\frac{2}{3}x^{-5/3}\right) = -4x^{-5/3} \] 8. **Differentiate \( -\frac{2}{3}x^6 \)**: \[ \frac{d}{dx}\left(-\frac{2}{3}x^6\right) = -\frac{2}{3} \cdot 6x^{5} = -4x^{5} \] 9. **Combine all the derivatives**: \[ g'(x) = \frac{1}{3} + 3x^{-2} + \frac{1}{2}x^{-1/2} + \frac{1}{2}x^{-3/2} + 2x - 2^x \cdot \log(2) - 4x^{-5/3} - 4x^5 \] ### Final Result for Part (ii): \[ g'(x) = \frac{1}{3} + 3x^{-2} + \frac{1}{2}x^{-1/2} + \frac{1}{2}x^{-3/2} + 2x - 2^x \cdot \log(2) - 4x^{-5/3} - 4x^5 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Solved Examples|48 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

(5x^(2)-4+6x^(3))-:(-2+3x)

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)

(i) (2x+3) (3x-5) (ii) x(1+x)^(3) (iii) (sqrtx + 1/x) (x -1/sqrtx) (iv) (x-1/x)^(2) (v) (x^(2) + 1/x^(2))^(3) (vi) (2x^(2) +5x-1) (x-3)

simplify: (i) 2p^(3) - 3p^(2) + 4p - 5- 6p^(3) + 2p^(2) - 8p - 2 + 6p + 8 (ii) 2x^(2) - xy + 6x - 4y + 5xy - 4x + 6x^(2) + 3y (iii) x^(4) - 6x^(3) + 2x - 7 + 7x^(3) - x + 5x^(2) + 2 - x^(4)

x ^ (3) + 5x ^ (2) -2x-24, x ^ (3) -4x ^ (2) + x + 6

((2x^(4)-3x^(3)-3x^(2)+6x-2)/(x^(2)-2))

Differentiate (i) 6ax^(5)+ 4x^(3) -3x^(2) +2x -7 (ii) 5x^(-3//2) + 4/sqrtx + sqrtx -7/x (iii) ax^(3) + bx^(2) + cx+ d, where a,b,c,d are constants