Home
Class 11
MATHS
(i) 4 cot x - 1/2 cos x + 2/cosx - 3/s...

(i) ` 4 cot x - 1/2 cos x + 2/cosx - 3/sin x + ( 6 cot x)/(cosecx) + 9`
(ii) ` -5 tan x + 4 tan x cos x -3 cotx sec x + 2 sec x -13`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivatives of the given functions, we will apply the rules of differentiation step by step. ### Part (i): Differentiate \( 4 \cot x - \frac{1}{2} \cos x + \frac{2}{\cos x} - \frac{3}{\sin x} + \frac{6 \cot x}{\csc x} + 9 \) 1. **Differentiate each term:** - The derivative of \( 4 \cot x \) is \( -4 \csc^2 x \). - The derivative of \( -\frac{1}{2} \cos x \) is \( \frac{1}{2} \sin x \). - The derivative of \( \frac{2}{\cos x} \) (which is \( 2 \sec x \)) is \( 2 \sec x \tan x \). - The derivative of \( -\frac{3}{\sin x} \) (which is \( -3 \csc x \)) is \( 3 \csc x \cot x \). - The derivative of \( \frac{6 \cot x}{\csc x} \) simplifies to \( 6 \cot x \sin x \), and its derivative is \( 6 \left( -\csc^2 x \sin x + \cot x \cos x \right) \). - The derivative of the constant \( 9 \) is \( 0 \). 2. **Combine the derivatives:** \[ \frac{d}{dx}(4 \cot x - \frac{1}{2} \cos x + \frac{2}{\cos x} - \frac{3}{\sin x} + \frac{6 \cot x}{\csc x} + 9) = -4 \csc^2 x + \frac{1}{2} \sin x + 2 \sec x \tan x + 3 \csc x \cot x + 6 \left( -\csc^2 x \sin x + \cot x \cos x \right) \] ### Part (ii): Differentiate \( -5 \tan x + 4 \tan x \cos x - 3 \cot x \sec x + 2 \sec x - 13 \) 1. **Differentiate each term:** - The derivative of \( -5 \tan x \) is \( -5 \sec^2 x \). - The derivative of \( 4 \tan x \cos x \) requires the product rule: \[ 4 \left( \sec^2 x \cos x + \tan x (-\sin x) \right) = 4 \sec^2 x \cos x - 4 \tan x \sin x \] - The derivative of \( -3 \cot x \sec x \) also requires the product rule: \[ -3 \left( -\csc^2 x \sec x + \cot x \sec x \tan x \right) = 3 \csc^2 x \sec x - 3 \cot x \sec x \tan x \] - The derivative of \( 2 \sec x \) is \( 2 \sec x \tan x \). - The derivative of the constant \( -13 \) is \( 0 \). 2. **Combine the derivatives:** \[ \frac{d}{dx}(-5 \tan x + 4 \tan x \cos x - 3 \cot x \sec x + 2 \sec x - 13) = -5 \sec^2 x + 4 \sec^2 x \cos x - 4 \tan x \sin x + 3 \csc^2 x \sec x - 3 \cot x \sec x \tan x + 2 \sec x \tan x \] ### Final Result The derivatives for both parts are: - Part (i): \[ -4 \csc^2 x + \frac{1}{2} \sin x + 2 \sec x \tan x + 3 \csc x \cot x + 6 \left( -\csc^2 x \sin x + \cot x \cos x \right) \] - Part (ii): \[ -5 \sec^2 x + 4 \sec^2 x \cos x - 4 \tan x \sin x + 3 \csc^2 x \sec x - 3 \cot x \sec x \tan x + 2 \sec x \tan x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Solved Examples|48 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

int (dx) / (tan x + cot x + sec x + cos ecx)

1- (sin ^ (2) x) / (1 + cot x) + (cos ^ (2) x) / (1 + tan x) = sin x cos x

1- (sin ^ (2) x) / (1 + cot x) - (cos ^ (2) x) / (1 + tan x) = sin x cos x

cotx cot 2x - cot 2x cot 3x - cot 3x cot x = 1

(cosec x-sin x)(sec x-cos x)(tan x+cot x)

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

What is (cosec x - sin x ) (sec x- cos x) (tan x + cot x) equal to ?

if x=sec x-tan x and y=cos ecx+cot x then prove xy+1=y-x

(cosec x-sin x)(sec x-cos x)(tan x+cot x)=1