Home
Class 11
MATHS
(i) (2x+3) (3x-5) (ii) x(1+x)^(3) (ii...

(i) `(2x+3) (3x-5)` (ii) `x(1+x)^(3) ` (iii) ` (sqrtx + 1/x) (x -1/sqrtx)`
(iv) ` (x-1/x)^(2)` (v) ` (x^(2) + 1/x^(2))^(3)` (vi) `(2x^(2) +5x-1) (x-3)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### (i) Differentiate `(2x + 3)(3x - 5)` 1. **Identify the functions**: Let \( u = 2x + 3 \) and \( v = 3x - 5 \). 2. **Apply the product rule**: The product rule states that \( \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \). 3. **Find derivatives**: - \( \frac{du}{dx} = 2 \) - \( \frac{dv}{dx} = 3 \) 4. **Substitute into the product rule**: \[ \frac{d}{dx}((2x + 3)(3x - 5)) = (2x + 3)(3) + (3x - 5)(2) \] 5. **Simplify**: \[ = 6x + 9 + 6x - 10 = 12x - 1 \] ### (ii) Differentiate `x(1 + x)^3` 1. **Identify the functions**: Let \( u = x \) and \( v = (1 + x)^3 \). 2. **Apply the product rule**: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] 3. **Find derivatives**: - \( \frac{du}{dx} = 1 \) - \( \frac{dv}{dx} = 3(1 + x)^2 \cdot 1 = 3(1 + x)^2 \) 4. **Substitute into the product rule**: \[ \frac{d}{dx}(x(1 + x)^3) = x(3(1 + x)^2) + (1 + x)^3(1) \] 5. **Simplify**: \[ = 3x(1 + x)^2 + (1 + x)^3 \] ### (iii) Differentiate `(√x + 1/x)(x - 1/√x)` 1. **Identify the functions**: Let \( u = \sqrt{x} + \frac{1}{x} \) and \( v = x - \frac{1}{\sqrt{x}} \). 2. **Apply the product rule**: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] 3. **Find derivatives**: - \( \frac{du}{dx} = \frac{1}{2\sqrt{x}} - \frac{1}{x^2} \) - \( \frac{dv}{dx} = 1 + \frac{1}{2}x^{-3/2} \) 4. **Substitute into the product rule**: \[ = \left(\sqrt{x} + \frac{1}{x}\right)\left(1 + \frac{1}{2\sqrt{x}}\right) + \left(x - \frac{1}{\sqrt{x}}\right)\left(\frac{1}{2\sqrt{x}} - \frac{1}{x^2}\right) \] ### (iv) Differentiate `(x - 1/x)^2` 1. **Let \( y = (x - \frac{1}{x})^2 \)**. 2. **Use the chain rule**: \[ \frac{dy}{dx} = 2(x - \frac{1}{x})\left(1 + \frac{1}{x^2}\right) \] 3. **Simplify**: \[ = 2(x - \frac{1}{x})(1 + \frac{1}{x^2}) \] ### (v) Differentiate `(x^2 + 1/x^2)^3` 1. **Let \( y = (x^2 + \frac{1}{x^2})^3 \)**. 2. **Use the chain rule**: \[ \frac{dy}{dx} = 3(x^2 + \frac{1}{x^2})^2\left(2x - \frac{2}{x^3}\right) \] ### (vi) Differentiate `(2x^2 + 5x - 1)(x - 3)` 1. **Identify the functions**: Let \( u = 2x^2 + 5x - 1 \) and \( v = x - 3 \). 2. **Apply the product rule**: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] 3. **Find derivatives**: - \( \frac{du}{dx} = 4x + 5 \) - \( \frac{dv}{dx} = 1 \) 4. **Substitute into the product rule**: \[ = (2x^2 + 5x - 1)(1) + (x - 3)(4x + 5) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Solved Examples|48 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (x+2y)^(5) (iii) (x-(1)/(x))^(6) " "(iv) ((2x)/(3)=(3)/(2x))^(5) (v) (x^(2) +(2)/(x))^(6)" "(vi) (1+(1)/(x^(2)))^(4)

(i) (3x^(2) +4x-5)/x (ii) ((x^(3) +1)(x-2))/x^(2) (iii) (x-4)/(2sqrtx) (iv) (( 1+x)sqrtx)/root3(x) (v) (ax^(2) +bx+c)/sqrtx (vi) (a+b cos x)/sin x

Which of the following are polynomials ? (i) x^(2)-3x+1 " " (ii) x^(2)+5x+2 " "(iii) x-(1)/(y) " " (iv) x^(7)+8 " " (v) x^(3)+sqrt(x)-2 (vi) sqrt(2)x^(2)+x-1 " " (vii) (3x-1)(x+5) " " (viii) (x-(3)/(x))(x+2) " " (ix)2x^(2)-1 (x) x+(1)/(sqrt(x))+2

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Which of the following are quadratic equations? (i) x^(2)8x+12=0 (ii) x+(1)/(x)=5 (iii) x+(5)/(x)=x^(2) (iv) x^(2)-5sqrtx+7=0 (v) x^(2)-5x-sqrtx+4=0 (vi) x^(2)-(1)/(x^(2))=4 (vii) 5x^(2)-7x=3x^(2)-7x+3 (viii) (1)/(4)x^(2)+(7)/(6)x-2=0

(i) (x ^ (3) + 2x ^ (2) + 3x) -: 2x (ii) (10x-25) - :( 2x-5) (iii) (x (x + 1) (x + 2 ) (x + 3)) - :( x (x + 1))

Which of the following expressions are polynomials ? In case of a polynomial , write its degree. (i) x^(5)-2x^(3)+x+sqrt(3) (ii) y^(3)+sqrt(3)y (iii) t^(2)-(2)/(5)t+sqrt(5) (iv) x^(100)-1 (v) (1)/(sqrt(2))x^(2)-sqrt(2)x+2 (vi) x^(-2)+2x^(-1)+3 (vii) 1 (viii) (-3)/(5) (ix) (x^(2))/(2)-(2)/(x^(2)) (x) root(3)(2)x^(2)-8 (xi) (1)/(2x^(2)) (xii) (1)/(sqrt(5))x^(1//2)+1 (xiii) (3)/(5)x^(2)-(7)/(3)x+9 (xiv) x^(4)-x^(3//2)+x-3 (xv) 2x^(3)+3x^(2)+sqrt(x)-1

Find domain(i) f(x) = (1)/(x - 5) (ii) f(x) = (3 - x)/(x - 3) (iii) f(x) = (x^(2) - 1)/(x - 1) (iv) f(x) = (| x - 3 |)/(x - 3) (v) f(x) = (1)/(2 - sin 3x)

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-– 4x^2 – x + 1 = (x – 2)^3