Home
Class 11
MATHS
Differentiate w.r.t x (i) (3x^(2) +4x-5...

Differentiate w.r.t `x`
(i) `(3x^(2) +4x-5)/x`
(ii) ` ((x^(3) +1)(x-2))/x^(2)`
(iii) ` (x-4)/(2sqrtx) `
(iv) ` (( 1+x)sqrtx)/root3(x)`
(v) `(ax^(2) +bx+c)/sqrtx `
(vi) ` (a+b cos x)/sin x `

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve each part of the question step by step. ### (i) Differentiate \( \frac{3x^2 + 4x - 5}{x} \) 1. **Rewrite the expression**: \[ \frac{3x^2 + 4x - 5}{x} = 3x + 4 - \frac{5}{x} \] 2. **Differentiate**: \[ \frac{dy}{dx} = \frac{d}{dx}(3x) + \frac{d}{dx}(4) - \frac{d}{dx}\left(\frac{5}{x}\right) \] \[ = 3 + 0 - \frac{d}{dx}(5x^{-1}) \] \[ = 3 + 0 + 5x^{-2} \] \[ = 3 + \frac{5}{x^2} \] **Final Answer**: \[ \frac{dy}{dx} = 3 + \frac{5}{x^2} \] ### (ii) Differentiate \( \frac{(x^3 + 1)(x - 2)}{x^2} \) 1. **Rewrite the expression**: \[ y = \frac{(x^3 + 1)(x - 2)}{x^2} \] 2. **Use the product rule**: Let \( u = (x^3 + 1) \) and \( v = (x - 2) \). \[ y = \frac{u \cdot v}{x^2} \] 3. **Differentiate using the quotient rule**: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{x^2} \cdot \frac{1}{x^2} \] where \( \frac{du}{dx} = 3x^2 \) and \( \frac{dv}{dx} = 1 \). 4. **Substitute and simplify**: \[ = \frac{(x - 2)(3x^2) - (x^3 + 1)(1)}{x^4} \] \[ = \frac{3x^3 - 6x^2 - x^3 - 1}{x^4} \] \[ = \frac{2x^3 - 6x^2 - 1}{x^4} \] **Final Answer**: \[ \frac{dy}{dx} = \frac{2x^3 - 6x^2 - 1}{x^4} \] ### (iii) Differentiate \( \frac{x - 4}{2\sqrt{x}} \) 1. **Rewrite the expression**: \[ y = \frac{x - 4}{2x^{1/2}} = \frac{1}{2}(x^{1/2} - 4x^{-1/2}) \] 2. **Differentiate**: \[ \frac{dy}{dx} = \frac{1}{2}\left(\frac{1}{2}x^{-1/2} + 2 \cdot 4x^{-3/2}\right) \] \[ = \frac{1}{4\sqrt{x}} + \frac{8}{2x^{3/2}} = \frac{1}{4\sqrt{x}} + \frac{4}{x^{3/2}} \] **Final Answer**: \[ \frac{dy}{dx} = \frac{1}{4\sqrt{x}} + \frac{4}{x^{3/2}} \] ### (iv) Differentiate \( \frac{(1 + x)\sqrt{x}}{\sqrt[3]{x}} \) 1. **Rewrite the expression**: \[ y = (1 + x)x^{1/2}x^{-1/3} = (1 + x)x^{1/6} \] 2. **Use the product rule**: Let \( u = (1 + x) \) and \( v = x^{1/6} \). \[ \frac{dy}{dx} = u'v + uv' \] where \( u' = 1 \) and \( v' = \frac{1}{6}x^{-5/6} \). 3. **Substitute and simplify**: \[ = (1)(x^{1/6}) + (1 + x)\left(\frac{1}{6}x^{-5/6}\right) \] \[ = x^{1/6} + \frac{1 + x}{6x^{5/6}} \] **Final Answer**: \[ \frac{dy}{dx} = x^{1/6} + \frac{1 + x}{6x^{5/6}} \] ### (v) Differentiate \( \frac{ax^2 + bx + c}{\sqrt{x}} \) 1. **Rewrite the expression**: \[ y = (ax^2 + bx + c)x^{-1/2} \] 2. **Use the product rule**: Let \( u = ax^2 + bx + c \) and \( v = x^{-1/2} \). \[ \frac{dy}{dx} = u'v + uv' \] where \( u' = 2ax + b \) and \( v' = -\frac{1}{2}x^{-3/2} \). 3. **Substitute and simplify**: \[ = (2ax + b)x^{-1/2} + (ax^2 + bx + c)\left(-\frac{1}{2}x^{-3/2}\right) \] **Final Answer**: \[ \frac{dy}{dx} = (2ax + b)x^{-1/2} - \frac{1}{2}(ax^2 + bx + c)x^{-3/2} \] ### (vi) Differentiate \( \frac{a + b \cos x}{\sin x} \) 1. **Use the quotient rule**: Let \( u = a + b \cos x \) and \( v = \sin x \). \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( \frac{du}{dx} = -b \sin x \) and \( \frac{dv}{dx} = \cos x \). 2. **Substitute and simplify**: \[ = \frac{\sin x(-b \sin x) - (a + b \cos x)(\cos x)}{\sin^2 x} \] \[ = \frac{-b \sin^2 x - a \cos x - b \cos^2 x}{\sin^2 x} \] **Final Answer**: \[ \frac{dy}{dx} = \frac{-b \sin^2 x - a \cos x - b \cos^2 x}{\sin^2 x} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Solved Examples|48 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Differentiate x^(2) w.r.t x^(3)

Differentiate w.r.t x: (x+(1)/(x))^(x)

Differentiate w.r.t. x: e^x/(x^3+3x^2+4)

Differentiate w.r.t. x: e^(cos(x^2+3x))

Differentiate sin x w.r.t. cos x

Differentiate x^(2) w.r.t cos x

Differentiate w.r.t. x: y=(cos x)^(sin x)+x^2

Differentiate e^(x) w.r.t. sqrtx .