Home
Class 11
MATHS
y = (1 -tan^(2) (x//2))/(1 + tan^(2)(x//...

` y = (1 -tan^(2) (x//2))/(1 + tan^(2)(x//2)) , " find " (dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}, \] we can use a trigonometric identity. ### Step 1: Recognize the Trigonometric Identity The expression resembles the double angle formula for cosine, which states: \[ \cos(2\theta) = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}. \] In our case, we can let \( \theta = \frac{x}{2} \). Therefore, we can rewrite \( y \) as: \[ y = \cos(x). \] ### Step 2: Differentiate the Function Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\cos(x)). \] Using the derivative of cosine, we have: \[ \frac{dy}{dx} = -\sin(x). \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\sin(x). \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Solved Examples|48 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((1-x)/(1+x)), find (dy)/(dx)

If tan(x+y)+tan(x-y)=1, find (dy)/(dx)

If x=y tan((x)/(2)), then (dy)/(dx)=

If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________

y=tan^(-1)((2x)/(1+15x^(2))) find (dy)/(dx)

y=(x^(2)+1)tan^(-l)x find (dy)/(dx)

If y=x^(tan x)+sqrt((x^(2)+1)/(2)), find (dy)/(dx)

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

y^(2)+xy=tan(x+y) then find (dy)/(dx)=?