Home
Class 11
MATHS
1/(x^(5))...

`1/(x^(5))`

Text Solution

Verified by Experts

The correct Answer is:
`(-5)/x^(6)`

`y=x^(-5) Rightarrow (y+deltay)(x+deltax)^(-5)`
` (deltay)/(dx) = ((x+deltax)^(-5)-x^(-5))/(deltax)`
` therefore (dy)/(dx) = lim_(deltax to 0) (deltay)/(deltax)`
`lim_(deltaxto0)((x+deltax)^(-5)-x^(-5))/(deltax) =lim_(deltaxtox) (x^(-5){(1+(deltax)/x)^(-5)-1})/(deltax)`
` = 1/x^(5).lim_(deltaxto0) ({1+(-5).(deltax)/x + ((-5)(-6))/2.((deltax)/x)^(2) +....-1})/(deltax)`
`=1/x^(5) lim_(deltaxto0)({(-5).(deltax)/x+15.((deltax)/x)^(2)+....})/(deltax)`
` = 1/x^(6). lim_(deltaxto0)[ (-5)+15((deltax)/x^(2))+.....]`
` =(-5)/x^(6)`
Henece, ` d/(dx) (x^(-5)) =(-5)/x^(6)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

(3)/(x+1)-(2)/(x-1)=(5)/(x^(2)-1)

Solve for x:(1)/(x+1)+(3)/(5x+1)=(5)/(x+4),x!=-1,-(1)/(5),-4

The value of lim_(x rarr oo)(3^(x+1)-5^(x+1))/(3^(x)-5^(x))=5

Determine the following limit: (lim)_(x->1. 5^(\ ))f(x)= (x + 1.5)(x-1.5)

log5+log(5x+1)=log(x+5)+1

find the real value of x for which the matrix =[(x+1,3,5),(1,x+3,5),(1,3,x+5)] is non-singular.

Solve 5^(x+1)+5^(2-x)=5^(3)+1