Home
Class 11
MATHS
sqrt(ax +b)...

`sqrt(ax +b)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( \sqrt{ax + b} \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the Function We start by rewriting the square root in exponent form: \[ y = \sqrt{ax + b} = (ax + b)^{\frac{1}{2}} \] ### Step 2: Apply the Chain Rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The chain rule states that if you have a composite function \( f(g(x)) \), then the derivative is: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] In our case, let \( f(u) = u^{\frac{1}{2}} \) where \( u = ax + b \). ### Step 3: Differentiate the Outer Function First, we differentiate the outer function \( f(u) \): \[ f'(u) = \frac{1}{2} u^{-\frac{1}{2}} = \frac{1}{2\sqrt{u}} \] ### Step 4: Differentiate the Inner Function Next, we differentiate the inner function \( g(x) = ax + b \): \[ g'(x) = a \] ### Step 5: Combine Using the Chain Rule Now, we apply the chain rule: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) = \frac{1}{2\sqrt{ax + b}} \cdot a \] ### Step 6: Simplify the Expression Thus, we can simplify the expression: \[ \frac{dy}{dx} = \frac{a}{2\sqrt{ax + b}} \] ### Final Answer The derivative of \( \sqrt{ax + b} \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{a}{2\sqrt{ax + b}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr oo) (sqrt (x ^ (2) + ax + b) -x) =

x = ( sqrt ( a + b ) - sqrt (a -b ))/( sqrt (a +b ) + sqrt (a -b )), then what is bx ^(2) - 2ax + b equal to (b ne 0) ?

If x = (sqrt(2a + 3b)+sqrt(2a - 3b))/(sqrt(2a + 3b) - sqrt(2a - 3b)) , show that 3bx^(2) - 4ax + 3b = 0 .

Evaluate intx^3(sqrt(ax^2+b))dx

Let LL' be the latus rectum through the focus of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and A' be the farther vertex.If $A'LL' is equilateral,then the eccentricity of the hyperbola is (axes are coordinate axes).sqrt(3)( b) sqrt(3)+1((sqrt(3)+1)/(sqrt(2))) (d) ((sqrt(3)+1))/(sqrt(3))

The value of lim_(xrarr0)(sqrt(a^2-ax+x^2)-sqrt(a^2+ax+x^2))/(sqrt(a+x)-sqrt (a-x)) , is

Differentiate : (i) (ax + b)^(m) , (ii) (3x+5)^(6) , (iii) sqrt(ax^(2) + 2bx + c)

The abscissa of the point on the curve sqrt(xy)=a+x the tangent at which cuts off equal intercepts from the coordinate axes is -(a)/(sqrt(2))( b) a/sqrt(2)(c)-a sqrt(2)(d)a sqrt(2)