Home
Class 11
MATHS
1/(sqrt(x +2))...

`1/(sqrt(x +2))`

Text Solution

Verified by Experts

The correct Answer is:
`(-1)/(2(x+2)^(3/2))`

`y=1/(sqrt(x+2))Rightarrow (y+deltay) = 1/(sqrt(x+deltax+2)) `
`Rightarrow (deltay)/(deltax)= {1/(sqrt(x+deltax+2))-1/(sqrt(x+2))}. 1/(deltax)`
`:. (dy)/(dx) = lim_(deltaxto0) (deltay)/(deltax)`
`= lim_(deltaxto0) 1/(deltax) {1/(sqrt(x+deltax+2))-1/(sqrt(x+2))}. 1/(deltax)`
`= (dy)/(dx) = lim_(deltax to0) (deltay)/(deltax)`
`= lim_(deltato 0) 1/(deltax) . ((sqrt(x+2)-sqrt(x+deltax+2))(sqrt(x+2)+sqrt(x+deltax+2)))/((sqrt(x+deltax+2))(sqrt(x+2))(sqrt(x+2)x sqrt(x+deltax+2)))`
`= lim_(deltaxto0) ({(x+2)-(x+deltax+2)})/((sqrt(x+deltax+2))(sqrt(x+2))). 1/((sqrt(x+2)+sqrt(x+deltax+2)))`
`= lim_(delta to0) (-1)/((sqrt(x+deltax +2)) (sqrt(x+2))). 1/((sqrt(x+2) + sqrt(x+deltax+2)))`
`= (-1)/(2(x+2)^(3//2))`
Hence, ` d/(dx) (1/(sqrt(x+2)))= (-1)/(2(x+2)^(3//2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)