Home
Class 11
MATHS
1/(sqrt(2x + 3))...

`1/(sqrt(2x + 3))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{1}{\sqrt{2x + 3}} \) using the first principles of differentiation, we will follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) using the first principles is given by: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute \( f(x) \) and \( f(x+h) \) We have: \[ f(x) = \frac{1}{\sqrt{2x + 3}} \] Now, we need to find \( f(x+h) \): \[ f(x+h) = \frac{1}{\sqrt{2(x+h) + 3}} = \frac{1}{\sqrt{2x + 2h + 3}} \] ### Step 3: Set up the limit Now we can substitute \( f(x) \) and \( f(x+h) \) into the derivative formula: \[ f'(x) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{2x + 2h + 3}} - \frac{1}{\sqrt{2x + 3}}}{h} \] ### Step 4: Simplify the expression To simplify the expression, we will combine the fractions in the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{2x + 3} - \sqrt{2x + 2h + 3}}{h \cdot \sqrt{2x + 3} \cdot \sqrt{2x + 2h + 3}} \] ### Step 5: Rationalize the numerator To eliminate the square roots in the numerator, we multiply by the conjugate: \[ f'(x) = \lim_{h \to 0} \frac{(\sqrt{2x + 3} - \sqrt{2x + 2h + 3})(\sqrt{2x + 3} + \sqrt{2x + 2h + 3})}{h \cdot \sqrt{2x + 3} \cdot \sqrt{2x + 2h + 3} \cdot (\sqrt{2x + 3} + \sqrt{2x + 2h + 3})} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{(2x + 3) - (2x + 2h + 3)}{h \cdot \sqrt{2x + 3} \cdot \sqrt{2x + 2h + 3} \cdot (\sqrt{2x + 3} + \sqrt{2x + 2h + 3})} \] ### Step 6: Simplify the numerator further The numerator simplifies to: \[ 2x + 3 - 2x - 2h - 3 = -2h \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{-2h}{h \cdot \sqrt{2x + 3} \cdot \sqrt{2x + 2h + 3} \cdot (\sqrt{2x + 3} + \sqrt{2x + 2h + 3})} \] ### Step 7: Cancel \( h \) and evaluate the limit Cancel \( h \) from the numerator and denominator: \[ f'(x) = \lim_{h \to 0} \frac{-2}{\sqrt{2x + 3} \cdot \sqrt{2x + 2h + 3} \cdot (\sqrt{2x + 3} + \sqrt{2x + 2h + 3})} \] As \( h \to 0 \), \( \sqrt{2x + 2h + 3} \to \sqrt{2x + 3} \): \[ f'(x) = \frac{-2}{\sqrt{2x + 3} \cdot \sqrt{2x + 3} \cdot (2\sqrt{2x + 3})} = \frac{-2}{2(2x + 3)^{3/2}} = \frac{-1}{(2x + 3)^{3/2}} \] ### Final Result Thus, the derivative of \( f(x) = \frac{1}{\sqrt{2x + 3}} \) is: \[ f'(x) = -\frac{1}{(2x + 3)^{3/2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

1/(sqrt(2-3x))

int(4x+1)/(sqrt(2x^2+x-3))dx=?

int(2x+1)/(sqrt(x^2+2x+3))dx=

Evaluate: int(2x+1)/(sqrt(x^2+4x+3))\ dx

int(1)/(sqrt((x-2)(x-3)))dx=

int(x+1)/(sqrt(2x^(2)+x-3))

int((2x-1)dx)/(sqrt(x^(2)-x+3))

int_(0)^((1)/(2))(1)/(sqrt(3-2x))dx=sqrt(3)-sqrt(2)

(2x+1)/(sqrt(x^(2)+2x+3))

int1/(sqrt(x(2-3x)))dx