Home
Class 11
MATHS
sqrt(sec x)...

`sqrt(sec x) `

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sqrt{\sec x} \), we will follow these steps: ### Step 1: Rewrite the function We start by rewriting the function in a more convenient form for differentiation: \[ y = \sec x^{1/2} \] ### Step 2: Apply the Chain Rule To differentiate \( y \), we will use the chain rule. The chain rule states that if you have a composite function \( y = f(g(x)) \), then the derivative \( \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \). Here, let \( u = \sec x \), so we can express \( y \) as: \[ y = u^{1/2} \] ### Step 3: Differentiate using the power rule Now, we differentiate \( y \) with respect to \( u \): \[ \frac{dy}{du} = \frac{1}{2} u^{-1/2} \] ### Step 4: Differentiate \( u = \sec x \) Next, we need to find \( \frac{du}{dx} \). The derivative of \( \sec x \) is: \[ \frac{du}{dx} = \sec x \tan x \] ### Step 5: Combine using the Chain Rule Now we can combine these results using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2} u^{-1/2} \cdot \sec x \tan x \] ### Step 6: Substitute back \( u = \sec x \) Substituting back \( u = \sec x \) into the equation gives: \[ \frac{dy}{dx} = \frac{1}{2} (\sec x)^{-1/2} \cdot \sec x \tan x \] ### Step 7: Simplify the expression Now we simplify the expression: \[ \frac{dy}{dx} = \frac{1}{2} \sec x \tan x \cdot \frac{1}{\sqrt{\sec x}} = \frac{1}{2} \tan x \sqrt{\sec x} \] ### Final Answer Thus, the derivative of \( y = \sqrt{\sec x} \) is: \[ \frac{dy}{dx} = \frac{1}{2} \tan x \sqrt{\sec x} \] ---

To differentiate the function \( y = \sqrt{\sec x} \), we will follow these steps: ### Step 1: Rewrite the function We start by rewriting the function in a more convenient form for differentiation: \[ y = \sec x^{1/2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28A|13 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(cos^(-1)sqrt(cos x)) is equal to (a) (1)/(2)sqrt(1+sec x)(b)sqrt(1+sec x)(c)-(1)/(2)sqrt(1+sec x)(d)-sqrt(1+sec x)

int sqrt(1+sec x)dx

int sqrt((csc x-cot x)/(csc x+cot x))*(sec x)/(sqrt(1+2sec x))dx

int_(0)^( Prove that )sqrt(1+sec x)dx=sin^(-1)(sqrt(2)sin((x)/(2)))

int_(0)^((pi)/(3))(tan x)/(sqrt(2k sec x))dx=1-(1)/(sqrt(2)), then value of k is (a) 2 (b) 1 (b) 1 (d) (1)/(4)

If int sqrt(1+sec x)dx=2sin^(-1)[sqrt(2)f(x)]+c then (d)/(dx)[f(x)] is equal to (A)cos(x)/(2)(B)-(1)/(2)cos(x)/(2)(C)(1)/(2)cos(x)/(2)(D)(1)/(2)sin(x)/(2)

sqrt(2)sec x+tan x=1

int sec x tan x sqrt(sec^(2) x+1)dx

Solve the trigonometric equation: sqrt(2)sec x+tan x=1