Home
Class 11
MATHS
e^(x) cosx...

`e^(x) cosx`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = e^x \cos x \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative of their product is given by: \[ \frac{d}{dx}(u \cdot v) = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the Functions**: - Let \( u = e^x \) and \( v = \cos x \). 2. **Differentiate Each Function**: - The derivative of \( u \) with respect to \( x \) is: \[ \frac{du}{dx} = e^x \] - The derivative of \( v \) with respect to \( x \) is: \[ \frac{dv}{dx} = -\sin x \] 3. **Apply the Product Rule**: - Using the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] - Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = e^x (-\sin x) + \cos x (e^x) \] 4. **Simplify the Expression**: - Combine the terms: \[ \frac{dy}{dx} = -e^x \sin x + e^x \cos x \] - Factor out \( e^x \): \[ \frac{dy}{dx} = e^x (\cos x - \sin x) \] ### Final Result: Thus, the derivative of \( y = e^x \cos x \) is: \[ \frac{dy}{dx} = e^x (\cos x - \sin x) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : e^(x)+2cosx

If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx) =

Find the differentiation of (e^(2x)cosx)/(xsinx) w.r.t. \ x

lim_(x rarr 0) (e^x+e^-x-2 cosx)/(x sinx)

If e^(x)siny-e^(y)cosx=1,"then"(dy)/(dx) equals -

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

21. If lim_(xrarroo) e^(x^2) - cosx / (sin^2x) is equal to (a) 3 (b) 3/2 (c) 5/4 (d) 2

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

Evaluate : lim_(x -> 0 ) ((e^(x^(2)) - cosx )) / x^2