Home
Class 11
MATHS
(3x-5)(4x^(2) -3+e^(x))...

`(3x-5)(4x^(2) -3+e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (3x - 5)(4x^2 - 3 + e^x) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative of their product is given by: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the Functions**: Let \( u = 3x - 5 \) and \( v = 4x^2 - 3 + e^x \). 2. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(3x - 5) = 3 \] 3. **Differentiate \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(4x^2 - 3 + e^x) = 8x + 0 + e^x = 8x + e^x \] 4. **Apply the Product Rule**: Now, using the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = (3x - 5)(8x + e^x) + (4x^2 - 3 + e^x)(3) \] 5. **Expand the Expression**: - First term: \[ (3x - 5)(8x + e^x) = 24x^2 + 3x e^x - 40x - 5e^x \] - Second term: \[ (4x^2 - 3 + e^x)(3) = 12x^2 - 9 + 3e^x \] 6. **Combine Like Terms**: Now combine the two results: \[ \frac{dy}{dx} = (24x^2 - 9) + (3x e^x - 5e^x + 3e^x) + (12x^2) \] Combine the \( x^2 \) terms: \[ \frac{dy}{dx} = (24x^2 + 12x^2 - 9) + (3x e^x - 2e^x) \] \[ = 36x^2 - 9 + 3x e^x - 2e^x \] ### Final Answer: \[ \frac{dy}{dx} = 36x^2 - 9 + 3x e^x - 2e^x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x) + 1 = 0 is

int(x^(6)+7x^(5)+6x^(4)+5x^(3)+4x^(2)+3x+1)e^(x)dx equals

Solve the equation,log_(x^(2)+4x+5){log_(3x^(2)+4x+5)(x^(2)-3x)}=0

e^(4x)-e^(3x)-4e^(2x)-e^(x)+1=0 then the number of solution of equation is

Simplify: 9x^(4)(2x^(3)-5x^(4))x5x^(6)(x^(4)-3x^(2))

Find the coefficient of x^(5) in the expansion of ((2 + 3x + 4x^(2)))/(e^(x))

int (2e ^ (5x) + e ^ (4x) -4e ^ (3x) + 4e ^ (2x) + 2e ^ (x)) / (e ((2x) +4) (e ^ (2x) - 1) ^ (2)) dx

Evaluate: lim_(x rarr oo) (x^(5)+3x^(4)-4x^(3)-3x^(2)+2x+1)/(2x^(5)+4x^(2)-9x+16) .