Home
Class 11
MATHS
find dy/dx if y = (x^(2) - 4x+5) (x^(3) ...

find `dy/dx` if `y = (x^(2) - 4x+5) (x^(3) - 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = (x^2 - 4x + 5)(x^3 - 2)\), we will use the product rule of differentiation. The product rule states that if you have two functions \(u(x)\) and \(v(x)\), then the derivative of their product is given by: \[ \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the functions**: Let: \[ u = x^2 - 4x + 5 \] \[ v = x^3 - 2 \] 2. **Differentiate \(u\) and \(v\)**: - Differentiate \(u\): \[ \frac{du}{dx} = \frac{d}{dx}(x^2 - 4x + 5) = 2x - 4 \] - Differentiate \(v\): \[ \frac{dv}{dx} = \frac{d}{dx}(x^3 - 2) = 3x^2 \] 3. **Apply the product rule**: Using the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substitute \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\): \[ \frac{dy}{dx} = (x^2 - 4x + 5)(3x^2) + (x^3 - 2)(2x - 4) \] 4. **Expand the expression**: - First term: \[ (x^2 - 4x + 5)(3x^2) = 3x^4 - 12x^3 + 15x^2 \] - Second term: \[ (x^3 - 2)(2x - 4) = 2x^4 - 4x^3 - 4 + 8 = 2x^4 - 4x^3 + 8 \] 5. **Combine like terms**: Now combine the results from the first and second terms: \[ \frac{dy}{dx} = (3x^4 + 2x^4) + (-12x^3 - 4x^3) + (15x^2 + 8) \] \[ = 5x^4 - 16x^3 + 15x^2 + 8 \] Thus, the final result is: \[ \frac{dy}{dx} = 5x^4 - 16x^3 + 15x^2 + 8 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx if y=(x^3-2x-1)^5

find (dy)/(dx) if y=2(3x-2),x=4

Find dy/dx , y=(x^2+4)/(x+2)

Find (dy)/(dx) of y=(x^(2)-5x+8)(x^(3)-7x+9)

Find (dy)/(dx) if y = 5x^(4) + 6x^(3//2) + 9x .

find (dy)/(dx) , if y=3^(x)+2^(x)+5

Find (dy)/(dx) , if y= root(5)((3x^(2) + 8x+ 5)^(4))