Home
Class 11
MATHS
(x^(2) + 2x-3) (x^(2) + 7x+5)...

`(x^(2) + 2x-3) (x^(2) + 7x+5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (x^2 + 2x - 3)(x^2 + 7x + 5) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative of their product is given by: \[ \frac{d}{dx}[u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \] ### Step 1: Identify the functions Let: - \( u = x^2 + 2x - 3 \) - \( v = x^2 + 7x + 5 \) ### Step 2: Differentiate \( u \) and \( v \) Now we will differentiate both \( u \) and \( v \): \[ \frac{du}{dx} = \frac{d}{dx}(x^2 + 2x - 3) = 2x + 2 \] \[ \frac{dv}{dx} = \frac{d}{dx}(x^2 + 7x + 5) = 2x + 7 \] ### Step 3: Apply the product rule Using the product rule: \[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = (x^2 + 2x - 3)(2x + 7) + (x^2 + 7x + 5)(2x + 2) \] ### Step 4: Expand both products Now we will expand both products: 1. Expand \( (x^2 + 2x - 3)(2x + 7) \): \[ = x^2(2x + 7) + 2x(2x + 7) - 3(2x + 7) \] \[ = 2x^3 + 7x^2 + 4x^2 + 14x - 6x - 21 \] \[ = 2x^3 + 11x^2 + 8x - 21 \] 2. Expand \( (x^2 + 7x + 5)(2x + 2) \): \[ = x^2(2x + 2) + 7x(2x + 2) + 5(2x + 2) \] \[ = 2x^3 + 2x^2 + 14x^2 + 14x + 10x + 10 \] \[ = 2x^3 + 16x^2 + 24x + 10 \] ### Step 5: Combine the results Now we will combine the results from both expansions: \[ \frac{dy}{dx} = (2x^3 + 11x^2 + 8x - 21) + (2x^3 + 16x^2 + 24x + 10) \] \[ = 4x^3 + (11x^2 + 16x^2) + (8x + 24x) + (-21 + 10) \] \[ = 4x^3 + 27x^2 + 32x - 11 \] ### Final Result Thus, the derivative of the function \( y = (x^2 + 2x - 3)(x^2 + 7x + 5) \) is: \[ \frac{dy}{dx} = 4x^3 + 27x^2 + 32x - 11 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

(a) Find the quare root of (x^(2) - 8x +15) (2x^(2) -11x + 5) (2x^(2) - 7x + 3)

Add: 5x^(2) - 7x + 3, -8x^(2) + 2x -5 and 7x^(2) - x - 2

sqrt(3x^(2)-7x-30)-sqrt(2x^(2)-7x-5)=x-5

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Add: 2x^(3) - 9x^(2) + 8, 3x^(2) - 6x - 5, 7x^(3) - 10x + 1 and 3 + 2x - 5x^(2) - 4x^(3)

Add: (i) 3x, 7x (ii) 7y, -9y (iii) 2xy, 5xy, -xy (iv) 3x, 2y (v) 2x^(2), -3x^(2), 7x^(2) (vi) 7xyz, -5xyz, 9xyz, - 8xyz (vii) 6a^(3) , - 4a^(3), 10 a^(3), - 8a^(3) (viii) x^(2) - a^(2), -5x^(2) + 2a^(2), -4x^(2) + 4a^(2)

Simplyfy: (3x^(2) + 5x - 7)(x -1)- (x^(2) - 2x +3)(x + 4)