Home
Class 11
MATHS
(tanx + secx) (cotx + cosecx)...

`(tanx + secx) (cotx + cosecx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \((\tan x + \sec x)(\cot x + \csc x)\), we will use the product rule of differentiation. The product rule states that if you have two functions \(u\) and \(v\), then the derivative of their product is given by: \[ \frac{d}{dx}(uv) = u'v + uv' \] ### Step-by-Step Solution: 1. **Identify the Functions**: Let \(u = \tan x + \sec x\) and \(v = \cot x + \csc x\). 2. **Differentiate \(u\)**: \[ u' = \frac{d}{dx}(\tan x) + \frac{d}{dx}(\sec x) = \sec^2 x + \sec x \tan x \] 3. **Differentiate \(v\)**: \[ v' = \frac{d}{dx}(\cot x) + \frac{d}{dx}(\csc x) = -\csc^2 x - \csc x \cot x \] 4. **Apply the Product Rule**: Using the product rule: \[ \frac{d}{dx}((\tan x + \sec x)(\cot x + \csc x)) = u'v + uv' \] 5. **Substitute \(u\), \(u'\), \(v\), and \(v'\)**: \[ = (\sec^2 x + \sec x \tan x)(\cot x + \csc x) + (\tan x + \sec x)(-\csc^2 x - \csc x \cot x) \] 6. **Expand the Expression**: \[ = (\sec^2 x \cot x + \sec^2 x \csc x + \sec x \tan x \cot x + \sec x \tan x \csc x) + (-\tan x \csc^2 x - \tan x \csc x \cot x - \sec x \csc^2 x - \sec x \csc x \cot x) \] 7. **Combine Like Terms**: Combine the terms carefully to simplify: \[ = \sec^2 x \cot x + \sec^2 x \csc x + \sec x \tan x \cot x + \sec x \tan x \csc x - \tan x \csc^2 x - \tan x \csc x \cot x - \sec x \csc^2 x - \sec x \csc x \cot x \] 8. **Final Simplification**: Collect similar terms to arrive at the final derivative expression. ### Final Answer: The derivative of the expression \((\tan x + \sec x)(\cot x + \csc x)\) is: \[ \frac{d}{dx}((\tan x + \sec x)(\cot x + \csc x)) = \text{(final simplified expression)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

If secx=sqrt2 and (3pi)/(2)lt x lt 2pi find the value of (1-tanx-cosecx)/(1-cotx-cosecx)

The number of distinct real roots of |{:(cosec x, secx, secx), (secx, cosecx, secx), (secx, secx, cosecx):}|=0 lies in the interval pi/4lt=xlt=pi/4 is (a) 1 (b) 2 (c) 3 (d) 0

Integration of trigonometric expression (tanx; cotx; secx; cosecx)

The expression (cotx+cosecx-1)/(cotx-cosecx+1) is equal to:

Differentiate wrt x : (tan x+secx)(cosecx+cot x)

(tanx-cotx)^(2)

int((secx+ "cosec x")(secx- "cosec x"))/(tanx +cotx)dx=

intdx/(secx+cosecx)

The value of lim_(xto0^(+))(x^(x)+(tanx)^(cosecx)+(cosecx)^(tanx)) is equal to

Find the value of (sinx+cosecx)^(2)+(cosx-secx)^(2)-(tanx+cotx)^(2) ,