Home
Class 11
MATHS
(x^(3) cosx - 2^(x) tanx)...

`(x^(3) cosx - 2^(x) tanx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( y = x^3 \cos x - 2^x \tan x \), we will apply the product rule and the chain rule where necessary. Here’s a step-by-step solution: ### Step 1: Identify the functions We have two main parts to differentiate: 1. \( u = x^3 \) and \( v = \cos x \) for the first term \( x^3 \cos x \) 2. \( a = 2^x \) and \( b = \tan x \) for the second term \( 2^x \tan x \) ### Step 2: Differentiate the first term \( x^3 \cos x \) Using the product rule: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] where: - \( u = x^3 \) and \( \frac{du}{dx} = 3x^2 \) - \( v = \cos x \) and \( \frac{dv}{dx} = -\sin x \) So, \[ \frac{d}{dx}(x^3 \cos x) = x^3(-\sin x) + \cos x(3x^2) \] This simplifies to: \[ - x^3 \sin x + 3x^2 \cos x \] ### Step 3: Differentiate the second term \( 2^x \tan x \) Again using the product rule: \[ \frac{d}{dx}(ab) = a \frac{db}{dx} + b \frac{da}{dx} \] where: - \( a = 2^x \) and \( \frac{da}{dx} = 2^x \ln 2 \) - \( b = \tan x \) and \( \frac{db}{dx} = \sec^2 x \) So, \[ \frac{d}{dx}(2^x \tan x) = 2^x \sec^2 x + \tan x(2^x \ln 2) \] This simplifies to: \[ 2^x \sec^2 x + 2^x \tan x \ln 2 \] ### Step 4: Combine the derivatives Now we can combine the results from Steps 2 and 3: \[ \frac{dy}{dx} = \left(- x^3 \sin x + 3x^2 \cos x\right) - \left(2^x \sec^2 x + 2^x \tan x \ln 2\right) \] This gives us: \[ \frac{dy}{dx} = - x^3 \sin x + 3x^2 \cos x - 2^x \sec^2 x - 2^x \tan x \ln 2 \] ### Final Answer Thus, the derivative of the function \( y = x^3 \cos x - 2^x \tan x \) is: \[ \frac{dy}{dx} = - x^3 \sin x + 3x^2 \cos x - 2^x \sec^2 x - 2^x \tan x \ln 2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exrescise 28B|21 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

The value of {:(lim),(xrarr0):}(e^-(x^2/2)-cosx)/(x^3tanx) is equal to

int((cotx)/(sinx) - tan^(2)x -(tanx)/(cosx) + 2/(cosx)) dx

int (sin^6x + cos^6x)/(sin^2 x*cos^2x) dx (i) tanx+ cotx+3x+C (ii) tanx+ cotx-3x+C (iii)tanx-cotx-3x+C (iv)tanx-cotx+3x+C

intx^2/(xsinx+cosx)^2dx=-(xsecx)/(xsinx+cosx)+f(x)+c , then f(x) may be (A) sinx (B) xsinx (C) tanx (D) cotx

Find f'(x) if f(x) = (tanx)^(tanx)

Prove 1/(secx-tanx)-1/(cosx)=1/(cosx)-1/(secx+tanx)

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

Find the derivative of {(3)/((x)^(1/3)) - 5/(cosx) +6/(sinx ) - (2tanx )/(sec x) + 7} .

If f(x)=(x+cosx)(x-tanx)," find "f^(')(x) .