Home
Class 11
MATHS
(e^(x))/((1+x))...

`(e^(x))/((1+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{e^x}{1+x} \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then its derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = e^x \) and \( v = 1 + x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = e^x \) - \( v = 1 + x \) ### Step 2: Differentiate \( u \) and \( v \) Now, we need to find the derivatives of \( u \) and \( v \): - \( \frac{du}{dx} = e^x \) (the derivative of \( e^x \) is \( e^x \)) - \( \frac{dv}{dx} = 1 \) (the derivative of \( 1 + x \) is \( 1 \)) ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(1+x)(e^x) - (e^x)(1)}{(1+x)^2} \] ### Step 4: Simplify the Expression Now, we simplify the numerator: \[ \frac{dy}{dx} = \frac{(1+x)e^x - e^x}{(1+x)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{(1+x - 1)e^x}{(1+x)^2} = \frac{x e^x}{(1+x)^2} \] ### Final Answer Thus, the derivative of the function \( y = \frac{e^x}{1+x} \) is: \[ \frac{dy}{dx} = \frac{x e^x}{(1+x)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

(e^(x))/(1+e^(x))

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx

(e^(2x)+2e^(x)+1)/(e^(x))

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

The range of the function f(x)=(e^(x)-1)/(e^(x)+1) is

Range of the f(x)=(e^(x)-1)/(e^(x)+1)

Range of the f(x)=(e^(x)-1)/(e^(x)+1)

62.Range of the f(x)=(e^(x)-1)/(e^(x)+1)

Evaluate: int(e^(x)+1)/(e^(x)+x)dx

int(e^(-x))/(1+e^(x))dx=