Home
Class 11
MATHS
(e^(x))/((1+x^(2)))...

`(e^(x))/((1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{e^x}{1 + x^2} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then its derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = e^x \) and \( v = 1 + x^2 \). ### Step-by-Step Solution: 1. **Identify \( u \) and \( v \)**: - Let \( u = e^x \) - Let \( v = 1 + x^2 \) 2. **Differentiate \( u \) and \( v \)**: - The derivative of \( u \) is: \[ \frac{du}{dx} = e^x \] - The derivative of \( v \) is: \[ \frac{dv}{dx} = 0 + 2x = 2x \] 3. **Apply the Quotient Rule**: - Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule formula: \[ \frac{dy}{dx} = \frac{(1 + x^2)(e^x) - (e^x)(2x)}{(1 + x^2)^2} \] 4. **Simplify the numerator**: - The numerator becomes: \[ (1 + x^2)e^x - 2xe^x = e^x(1 + x^2 - 2x) \] - Thus, we can rewrite the derivative as: \[ \frac{dy}{dx} = \frac{e^x(1 + x^2 - 2x)}{(1 + x^2)^2} \] 5. **Final Result**: - Therefore, the derivative of \( y = \frac{e^x}{1 + x^2} \) is: \[ \frac{dy}{dx} = \frac{e^x(1 + x^2 - 2x)}{(1 + x^2)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

int(e^(x))/((1+x)^(3))dx-int(e^(x))/(2(1+x)^(2))dx=

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx

Find (dy)/(dx) of y=e^((x^(2))/(1+x^(2)))

Evaluate int x(e^(x))/((x+1)^(2))dx

int((x*e^(x))/((x+1)^(2)))dx

e^((x^2)//(1+x^2))

Integrate the functions (e^(x))/((1+e^(x))(2+e^(x)))

int(e^(x))/((1+e^(x))(2+e^(x)))dx

" 4.Evaluate: "int e^(x)((x-1)/(x^(2)))dx