Home
Class 11
MATHS
((2x^(2) - 4)/(3x^(2) + 7))...

`((2x^(2) - 4)/(3x^(2) + 7))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{2x^2 - 4}{3x^2 + 7} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), where \( u \) and \( v \) are both functions of \( x \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] ### Step-by-Step Solution: 1. **Identify \( u \) and \( v \)**: - Let \( u = 2x^2 - 4 \) - Let \( v = 3x^2 + 7 \) 2. **Differentiate \( u \) and \( v \)**: - \( \frac{du}{dx} = \frac{d}{dx}(2x^2 - 4) = 4x \) - \( \frac{dv}{dx} = \frac{d}{dx}(3x^2 + 7) = 6x \) 3. **Apply the Quotient Rule**: - Using the quotient rule: \[ \frac{dy}{dx} = \frac{(3x^2 + 7)(4x) - (2x^2 - 4)(6x)}{(3x^2 + 7)^2} \] 4. **Expand the Numerator**: - First term: \( (3x^2 + 7)(4x) = 12x^3 + 28x \) - Second term: \( (2x^2 - 4)(6x) = 12x^3 - 24x \) - Combine these: \[ \text{Numerator} = 12x^3 + 28x - (12x^3 - 24x) = 12x^3 + 28x - 12x^3 + 24x = 52x \] 5. **Final Expression**: - Substitute back into the derivative: \[ \frac{dy}{dx} = \frac{52x}{(3x^2 + 7)^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{52x}{(3x^2 + 7)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (4x - 7y) (4x - 7y) (ii) (3x^(2) - 4y^(2)) (3x^(2) - 4y^(2))

Multiply (2x^(3) - 5x^(2) - x + 7) by (3 - 2x + 4x^(2))

If x in R - {0} then minimum possible value of the expression (1)/(7)[(3x^(2)+(4)/(3x^(2))+1)^(2)-2(3x^(2)+(4)/(3x^(2)))+4]

Differentiate the following w.r.tx (i) (5x^(2) +6)(2 x^(3) +4 ) (ii) sqrtx (x^(2) +7) (iii) (x^(2) +3 )(x^(4) - 9)

((6x^(4)+8x^(3)+27x^(2)+7)/(3x^(2)+4x+1))

((5x^(2) + 6x+ 7))/((2x^(2) + 3x +4))

Solve:(x^(2)-4x+7)/(x^(2)-7x+12)<=(2)/(3)

Solve: (x^(2)-4x+7)/(x^(2)-7x+12)<=(2)/(3)

Multiply: 2x^(2)-4x+5)by(x^(2)+3x-7)