Home
Class 11
MATHS
((x^(2) + 3x-1)/(x+2))...

`((x^(2) + 3x-1)/(x+2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{x^2 + 3x - 1}{x + 2} \) with respect to \( x \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then its derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} \] ### Step-by-Step Solution: 1. **Identify \( u \) and \( v \)**: - Let \( u = x^2 + 3x - 1 \) - Let \( v = x + 2 \) 2. **Differentiate \( u \) and \( v \)**: - \( \frac{du}{dx} = 2x + 3 \) - \( \frac{dv}{dx} = 1 \) 3. **Apply the Quotient Rule**: Using the quotient rule formula: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{(x + 2)(2x + 3) - (x^2 + 3x - 1)(1)}{(x + 2)^2} \] 4. **Simplify the numerator**: - First, expand \( (x + 2)(2x + 3) \): \[ (x + 2)(2x + 3) = 2x^2 + 3x + 4x + 6 = 2x^2 + 7x + 6 \] - Now, subtract \( (x^2 + 3x - 1) \): \[ 2x^2 + 7x + 6 - (x^2 + 3x - 1) = 2x^2 + 7x + 6 - x^2 - 3x + 1 = x^2 + 4x + 7 \] 5. **Write the final derivative**: \[ f'(x) = \frac{x^2 + 4x + 7}{(x + 2)^2} \] ### Final Answer: The derivative of \( f(x) = \frac{x^2 + 3x - 1}{x + 2} \) is: \[ f'(x) = \frac{x^2 + 4x + 7}{(x + 2)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(2)-3x)/((x-1)(x-2))dx

The value of int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx , is

Evaluate: int(x+(1)/(x))^((3)/(2))((x^(2)-1)/(x^(2)))dx

" (8) "quad e=int(x+(1)/(x))^(3/2)((x^(2)-1)/(x^(2)))^(dx)

int(x^(2)+3x-1)/((x+1)^(2))dx

" The number of integral solution of the equation "(x^(2)-3x-1)^(|x+2|)=1" is "

If |{:(x^(2) +x , 3x - 1 , -x + 3),(2x +1 , 2 + x^(2) , x^(3) - 3),(x - 3, x^(2) + 4, 3x):}| = a_(0) + a_(1) x + a_(2) x^(2) + .... + x_(7) x^(7), then the value of a_(0) is

int(x-(1)/(x))^((3)/(2))(((x^(2)+1))/(x^(2)))dx=

If f(x) {:(=(x^(2)-4x+3)/(x^(2)-1)", ..."x!=1 ),( =2", ..."x=1):} then :

Evaluate int(x^(2)+3)/((x^(2)-1)(x^(2)-2))dx