Home
Class 11
MATHS
((5x^(2) + 6x+ 7))/((2x^(2) + 3x +4))...

`((5x^(2) + 6x+ 7))/((2x^(2) + 3x +4))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( \frac{5x^2 + 6x + 7}{2x^2 + 3x + 4} \) with respect to \( x \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{U}{V} \), then the derivative is given by: \[ \frac{d}{dx}\left(\frac{U}{V}\right) = \frac{V \cdot \frac{dU}{dx} - U \cdot \frac{dV}{dx}}{V^2} \] ### Step 1: Identify \( U \) and \( V \) Let: - \( U = 5x^2 + 6x + 7 \) - \( V = 2x^2 + 3x + 4 \) ### Step 2: Differentiate \( U \) and \( V \) Now we differentiate \( U \) and \( V \): - \( \frac{dU}{dx} = 10x + 6 \) - \( \frac{dV}{dx} = 4x + 3 \) ### Step 3: Apply the Quotient Rule Using the quotient rule, we have: \[ \frac{d}{dx}\left(\frac{U}{V}\right) = \frac{V \cdot \frac{dU}{dx} - U \cdot \frac{dV}{dx}}{V^2} \] Substituting \( U, V, \frac{dU}{dx}, \) and \( \frac{dV}{dx} \): \[ \frac{d}{dx}\left(\frac{5x^2 + 6x + 7}{2x^2 + 3x + 4}\right) = \frac{(2x^2 + 3x + 4)(10x + 6) - (5x^2 + 6x + 7)(4x + 3)}{(2x^2 + 3x + 4)^2} \] ### Step 4: Simplify the Numerator Now we simplify the numerator: 1. Expand \( (2x^2 + 3x + 4)(10x + 6) \): \[ = 20x^3 + 12x^2 + 30x^2 + 18x + 40x + 24 = 20x^3 + 42x^2 + 58x + 24 \] 2. Expand \( (5x^2 + 6x + 7)(4x + 3) \): \[ = 20x^3 + 15x^2 + 24x + 21 \] 3. Combine these results: \[ \text{Numerator} = (20x^3 + 42x^2 + 58x + 24) - (20x^3 + 15x^2 + 24x + 21) \] \[ = 20x^3 + 42x^2 + 58x + 24 - 20x^3 - 15x^2 - 24x - 21 \] \[ = (42x^2 - 15x^2) + (58x - 24x) + (24 - 21) \] \[ = 27x^2 + 34x + 3 \] ### Step 5: Write the Final Result Thus, the derivative is: \[ \frac{d}{dx}\left(\frac{5x^2 + 6x + 7}{2x^2 + 3x + 4}\right) = \frac{27x^2 + 34x + 3}{(2x^2 + 3x + 4)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Subtract (2x^(2) - 5x + 7) from (3x^(2) + 4x - 6)

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

Simplyfy: (3x^(2) + 5x - 7)(x -1)- (x^(2) - 2x +3)(x + 4)

(5x^(2)-4+6x^(3))-:(-2+3x)

12x - [3x^(2) + 5x^(2) - {7x^(2) - (4 - 3x - x^(3)) + 6x^(3)}-3x]

Evaluate Lt {x rarr oo} (3x ^ (3) -4x ^ (2) + 6x-1) / (2x ^ (3) + x ^ (2) -5x + 7)

Multiply (2x^(3) - 5x^(2) - x + 7) by (3 - 2x + 4x^(2))