Home
Class 11
MATHS
(x^(4))/(sinx)...

`(x^(4))/(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{x^4}{\sin x} \) with respect to \( x \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), the derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} \] ### Step-by-Step Solution: 1. **Identify \( u \) and \( v \)**: - Let \( u = x^4 \) - Let \( v = \sin x \) 2. **Differentiate \( u \) and \( v \)**: - The derivative of \( u \) is: \[ \frac{du}{dx} = 4x^3 \] - The derivative of \( v \) is: \[ \frac{dv}{dx} = \cos x \] 3. **Apply the Quotient Rule**: - Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule formula: \[ \frac{d}{dx}\left(\frac{x^4}{\sin x}\right) = \frac{\sin x \cdot 4x^3 - x^4 \cdot \cos x}{(\sin x)^2} \] 4. **Simplify the Expression**: - The expression can be rewritten as: \[ \frac{4x^3 \sin x - x^4 \cos x}{\sin^2 x} \] 5. **Factor Out Common Terms**: - Notice that \( 4x^3 \) can be factored out: \[ = \frac{x^3 (4 \sin x - x \cos x)}{\sin^2 x} \] ### Final Answer: The derivative of \( f(x) = \frac{x^4}{\sin x} \) is: \[ f'(x) = \frac{x^3 (4 \sin x - x \cos x)}{\sin^2 x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Differentiate each of the following with respect to x in following question: (x^(2)"cos"(pi)/4)/(sinx)

Find minium value of (9x^(2)sin^(2)x+4)/(2sinx.x) in the interval 0 le x le pi .

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

Evaluate : (i) int(sin4x)/(cos2x)dx (ii) int(sin4x)/(sinx)dx

If (1+sinx)/(cosx)+(cosx)/(1+sinx)=4 , then find x.

x^(sinx)+(sinx)^(x)

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).