Home
Class 11
MATHS
(2cotx)/(sqrt(x))...

`(2cotx)/(sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{2 \cot x}{\sqrt{x}} \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{U}{V} \), then its derivative is given by: \[ \frac{d}{dx} \left( \frac{U}{V} \right) = \frac{V \frac{dU}{dx} - U \frac{dV}{dx}}{V^2} \] ### Step-by-Step Solution 1. **Identify U and V**: - Let \( U = 2 \cot x \) - Let \( V = \sqrt{x} \) 2. **Differentiate U and V**: - The derivative of \( U \) is: \[ \frac{dU}{dx} = 2 \cdot (-\csc^2 x) = -2 \csc^2 x \] - The derivative of \( V \) is: \[ \frac{dV}{dx} = \frac{1}{2\sqrt{x}} \] 3. **Apply the Quotient Rule**: - Using the quotient rule: \[ \frac{d}{dx} \left( \frac{2 \cot x}{\sqrt{x}} \right) = \frac{\sqrt{x} \cdot (-2 \csc^2 x) - 2 \cot x \cdot \frac{1}{2\sqrt{x}}}{(\sqrt{x})^2} \] 4. **Simplify the Expression**: - The denominator \( (\sqrt{x})^2 = x \). - The numerator becomes: \[ -2 \sqrt{x} \csc^2 x - \frac{2 \cot x}{2\sqrt{x}} = -2 \sqrt{x} \csc^2 x - \frac{\cot x}{\sqrt{x}} \] - Thus, we have: \[ \frac{-2 \sqrt{x} \csc^2 x - \frac{\cot x}{\sqrt{x}}}{x} \] 5. **Combine Terms**: - Rewrite the numerator: \[ \frac{-2 \sqrt{x} \csc^2 x - \cot x/\sqrt{x}}{x} = \frac{-2 \sqrt{x} \csc^2 x - \cot x/\sqrt{x}}{x} \] - This can be expressed as: \[ \frac{-2 \sqrt{x} \csc^2 x - \frac{\cot x}{\sqrt{x}}}{x} = \frac{-2 \sqrt{x} \csc^2 x - \frac{\cot x}{\sqrt{x}}}{x} \] 6. **Final Result**: - The final derivative is: \[ \frac{-2 \sqrt{x} \csc^2 x - \frac{\cot x}{\sqrt{x}}}{x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

(2^(x) cotx)/(sqrt(x))

Differentiate: (2^(x)cotx)/(sqrtx)

int(cotx)/(sqrt(sinx))dx=

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

Evaluate the following integral: int_0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ )+sqrt(tanx))dx

Evaluate: int(sqrt(cotx)-sqrt(tanx))/(1+3sin2x)dx

If I=int(sqrt(cotx)-sqrt(tanx))dx, then I equals

cotx=-sqrt(3)