Home
Class 11
MATHS
((e^(x) + sinx)/(1+logx))...

`((e^(x) + sinx)/(1+logx))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{e^x + \sin x}{1 + \log x} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then its derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = e^x + \sin x \) and \( v = 1 + \log x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = e^x + \sin x \) - \( v = 1 + \log x \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(\sin x) = e^x + \cos x \] 2. **Differentiate \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(1) + \frac{d}{dx}(\log x) = 0 + \frac{1}{x} = \frac{1}{x} \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(1 + \log x)(e^x + \cos x) - (e^x + \sin x)\left(\frac{1}{x}\right)}{(1 + \log x)^2} \] ### Step 4: Simplify the Expression Now we simplify the numerator: 1. **Expand the first term**: \[ (1 + \log x)(e^x + \cos x) = e^x + \cos x + e^x \log x + \cos x \log x \] 2. **Expand the second term**: \[ (e^x + \sin x)\left(\frac{1}{x}\right) = \frac{e^x}{x} + \frac{\sin x}{x} \] Putting it all together, the numerator becomes: \[ e^x + \cos x + e^x \log x + \cos x \log x - \left(\frac{e^x}{x} + \frac{\sin x}{x}\right) \] ### Final Expression Thus, the derivative is: \[ \frac{dy}{dx} = \frac{e^x + \cos x + e^x \log x + \cos x \log x - \frac{e^x}{x} - \frac{\sin x}{x}}{(1 + \log x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

(e^(x) sinx)/(secx)

y=(sinx)^(logx)

x^(x)(1+logx)

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

Differentiate wrt x : (3e^(x)sinx+a^(x)*logx)

If int(1+xcosx)/(x(1-x^(2)e^(2sinx)))dx = k" ln "sqrt((x^(2)e^(2 sinx))/(1-x^(2)e^(2sinx)))+C then k is equal to:

If I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx ,then

Show that : e^( int ( dx /( xlogx ) )) = e^( log(logx )) = log x

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =