Home
Class 11
MATHS
(e^(x) sinx)/(secx)...

`(e^(x) sinx)/(secx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( y = \frac{e^x \sin x}{\sec x} \), we can simplify it first and then apply the product rule. Here’s a step-by-step solution: ### Step 1: Simplify the expression We know that \( \sec x = \frac{1}{\cos x} \). Therefore, we can rewrite the expression as: \[ y = e^x \sin x \cdot \cos x \] ### Step 2: Identify the functions Let \( u = e^x \sin x \) and \( v = \cos x \). We will differentiate \( y = u \cdot v \) using the product rule. ### Step 3: Apply the product rule The product rule states that if \( y = u \cdot v \), then: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] We need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). ### Step 4: Differentiate \( u \) To differentiate \( u = e^x \sin x \), we apply the product rule again: \[ \frac{du}{dx} = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x) \] ### Step 5: Differentiate \( v \) Now, differentiate \( v = \cos x \): \[ \frac{dv}{dx} = -\sin x \] ### Step 6: Substitute back into the product rule Now substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) back into the product rule: \[ \frac{dy}{dx} = (e^x \sin x)(-\sin x) + (\cos x)(e^x (\sin x + \cos x)) \] ### Step 7: Simplify the expression Now simplify the expression: \[ \frac{dy}{dx} = -e^x \sin^2 x + e^x \cos x (\sin x + \cos x) \] \[ = -e^x \sin^2 x + e^x \cos x \sin x + e^x \cos^2 x \] ### Step 8: Factor out \( e^x \) Now we can factor out \( e^x \): \[ \frac{dy}{dx} = e^x (-\sin^2 x + \cos x \sin x + \cos^2 x) \] ### Step 9: Use the Pythagorean identity Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \frac{dy}{dx} = e^x (1 + \cos x \sin x - \sin^2 x) \] ### Final Answer Thus, the derivative of the given expression is: \[ \frac{dy}{dx} = e^x (1 + \cos x \sin x - \sin^2 x) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

inte^(sinx)((sinx+1)/(secx))dx is equal to

inte^(tanx)(sinx-secx)dx is equal to

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

e^(sinx)sin(e^(x))

Find the period of the following functions: f(x)=((1+sinx)(1+secx))/((1+cosx)(1+cosecx))

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(sinx))/(x-sinx)

Evaluate of each of the following integral: int_0^(2pi)(e^(sinx))/(e^(sinx)+e^(-sin x))dx

((e^(x) + sinx)/(1+logx))

x^(3)secx

y=(sinx)^(tanx)+(cosx)^(secx)