Home
Class 11
MATHS
(2^(x) cotx)/(sqrt(x))...

`(2^(x) cotx)/(sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{2^x \cot x}{\sqrt{x}} \), we will use the quotient rule and product rule of differentiation. Let's go through the steps systematically. ### Step 1: Identify the function Let \( y = \frac{2^x \cot x}{\sqrt{x}} \). ### Step 2: Apply the quotient rule The quotient rule states that if you have a function \( y = \frac{u}{v} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let: - \( u = 2^x \cot x \) - \( v = \sqrt{x} \) ### Step 3: Differentiate \( u \) and \( v \) 1. **Differentiate \( v \)**: \[ v = \sqrt{x} = x^{1/2} \implies \frac{dv}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] 2. **Differentiate \( u \)** using the product rule: \[ u = 2^x \cot x \] Let: - \( a = 2^x \) - \( b = \cot x \) Then: \[ \frac{du}{dx} = a \frac{db}{dx} + b \frac{da}{dx} \] - \( \frac{db}{dx} = -\csc^2 x \) - \( \frac{da}{dx} = 2^x \ln 2 \) Therefore: \[ \frac{du}{dx} = 2^x (-\csc^2 x) + \cot x (2^x \ln 2) = 2^x \left(-\csc^2 x + \cot x \ln 2\right) \] ### Step 4: Substitute into the quotient rule Now substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule: \[ \frac{dy}{dx} = \frac{\sqrt{x} \cdot 2^x \left(-\csc^2 x + \cot x \ln 2\right) - 2^x \cot x \cdot \frac{1}{2\sqrt{x}}}{(\sqrt{x})^2} \] ### Step 5: Simplify the expression The denominator simplifies to: \[ (\sqrt{x})^2 = x \] Thus: \[ \frac{dy}{dx} = \frac{\sqrt{x} \cdot 2^x \left(-\csc^2 x + \cot x \ln 2\right) - \frac{2^x \cot x}{2\sqrt{x}}}{x} \] ### Step 6: Combine terms Factor out \( 2^x \): \[ \frac{dy}{dx} = \frac{2^x \left(\sqrt{x} \left(-\csc^2 x + \cot x \ln 2\right) - \frac{\cot x}{2\sqrt{x}}\right)}{x} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2^x}{x} \left(\sqrt{x} \left(-\csc^2 x + \cot x \ln 2\right) - \frac{\cot x}{2\sqrt{x}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

(2cotx)/(sqrt(x))

Differentiate: (2^(x)cotx)/(sqrtx)

x^(n) cotx

cotx=-sqrt(3)

int_(0)^(pi//2)(sqrt(cotx))/((1+sqrt(cotx)))dx=?

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

int(cotx)/(sqrt(sinx))dx=

If (cot^(2)x)/((1+sqrt(3)))+(1)/(2)(3-sqrt(3))=cotx , then what is the value of x ?

Evaluate: int(sqrt(cotx)-sqrt(tanx))/(1+3sin2x)dx