Home
Class 11
MATHS
((sinx - x cosx)/(x sinx + cos x ))...

`((sinx - x cosx)/(x sinx + cos x ))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( y = \frac{\sin x - x \cos x}{x \sin x + \cos x} \), we will use the quotient rule. The quotient rule states that if you have a function \( y = \frac{u}{v} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = \sin x - x \cos x \) and \( v = x \sin x + \cos x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = \sin x - x \cos x \) - \( v = x \sin x + \cos x \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). **Differentiating \( u \):** \[ \frac{du}{dx} = \frac{d}{dx}(\sin x) - \frac{d}{dx}(x \cos x) \] Using the product rule on \( x \cos x \): \[ \frac{d}{dx}(x \cos x) = \cos x + x(-\sin x) = \cos x - x \sin x \] Thus, \[ \frac{du}{dx} = \cos x - (\cos x - x \sin x) = x \sin x \] **Differentiating \( v \):** \[ \frac{dv}{dx} = \frac{d}{dx}(x \sin x) + \frac{d}{dx}(\cos x) \] Using the product rule on \( x \sin x \): \[ \frac{d}{dx}(x \sin x) = \sin x + x \cos x \] Thus, \[ \frac{dv}{dx} = (\sin x + x \cos x) - \sin x = x \cos x \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(x \sin x + \cos x)(x \sin x) - (\sin x - x \cos x)(x \cos x)}{(x \sin x + \cos x)^2} \] ### Step 4: Simplify the Expression Expanding the numerator: 1. First term: \( (x \sin x + \cos x)(x \sin x) = x^2 \sin^2 x + x \sin x \cos x \) 2. Second term: \( (\sin x - x \cos x)(x \cos x) = x \sin x \cos x - x^2 \cos^2 x \) Combining these: \[ \text{Numerator} = x^2 \sin^2 x + x \sin x \cos x - (x \sin x \cos x - x^2 \cos^2 x) \] This simplifies to: \[ x^2 \sin^2 x + x^2 \cos^2 x = x^2 (\sin^2 x + \cos^2 x) \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \text{Numerator} = x^2 \] ### Final Result Thus, we have: \[ \frac{dy}{dx} = \frac{x^2}{(x \sin x + \cos x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28E|44 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28C|12 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Differentiate : (i) ((sinx + cosx)/(sinx - cos x)) , (ii) ((sec x - 1)/(secx + 1))

3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

The value of 3(sinx - cosx)^4 + 6(sinx + cosx)^2 + 4 (sin^6 x + cos^6 x) is

(sinx+2cos x)/(3 sinx+4cosx)

(x+sinx)/(1-cosx)

int(cos2x)/(sinx+cosx)dx=

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

(sqrttan x)/(sinx. cosx)