`tan^(3)x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \tan^3 x \), we will use the chain rule. Here's the step-by-step solution: ### Step 1: Identify the outer and inner functions Let \( y = \tan^3 x \). We can identify the outer function as \( u^3 \) where \( u = \tan x \). ### Step 2: Differentiate the outer function Using the power rule, the derivative of \( u^3 \) with respect to \( u \) is: \[ \frac{dy}{du} = 3u^2 \] ### Step 3: Differentiate the inner function Now, we need to differentiate the inner function \( u = \tan x \). The derivative of \( \tan x \) is: \[ \frac{du}{dx} = \sec^2 x \] ### Step 4: Apply the chain rule Now, we apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = 3u^2 \cdot \sec^2 x \] ### Step 5: Substitute back for \( u \) Now, substitute back \( u = \tan x \): \[ \frac{dy}{dx} = 3(\tan x)^2 \cdot \sec^2 x \] ### Final Answer Thus, the derivative of \( \tan^3 x \) is: \[ \frac{dy}{dx} = 3\tan^2 x \sec^2 x \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Solve 3tan2x-4tan3x=tan^(2)3x tan2x

tan 3x

tan 3x

tan( 3x +1)

tan3x

intsec^3x tan^3x dx

Find the sum: tan x.tan2x+tan2x tan3x+...+tan x*tan(n+1)x

inttan^(-1)(sec3x+tan3x)dx=

The value lim_(x to tan^(-1) 3) (tan^6 x- 2tan^5 x - 3tan^4 x)/(tan^2 x -4 tan x+3)