`e^(cotx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = e^{\cot x} \), we will use the chain rule. Here’s the step-by-step solution: ### Step 1: Identify the function We have the function: \[ y = e^{\cot x} \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we apply the chain rule. The chain rule states that if you have a function \( y = e^{u} \), where \( u = \cot x \), then: \[ \frac{dy}{dx} = e^{u} \cdot \frac{du}{dx} \] In our case, \( u = \cot x \). ### Step 3: Differentiate \( u = \cot x \) Now we need to find \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{d}{dx}(\cot x) = -\csc^2 x \] ### Step 4: Substitute back into the chain rule Now, substituting \( u \) and \( \frac{du}{dx} \) back into the chain rule: \[ \frac{dy}{dx} = e^{\cot x} \cdot (-\csc^2 x) \] ### Step 5: Simplify the expression Thus, we can write the final answer as: \[ \frac{dy}{dx} = -e^{\cot x} \csc^2 x \] ### Final Answer The derivative of \( y = e^{\cot x} \) is: \[ \frac{dy}{dx} = -e^{\cot x} \csc^2 x \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x : e^(x) cotx

y=(tanx)^(cotx)+(cotx)^(tanx)

"If "y=(tanx)^(cotx)+(cotx)^(tanx)",prove that "(dy)/(dx)=(tanx)^(cotx)."cosec"^(2)x(1-logtanx)+(cotx)^(tanx).sec^(2)x[log(cotx)-1].

lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0 is equal to

d/(dx)(x^(5)cotx)=…………………. .

>0,"l e t"& ell=lim_(x->pi/2)(a^(cotx)-a^(cosx))/(cotx-cosx)"and"m=lim_(x->-oo)(sqrt(x^2+a x)-sqrt(x^2-a x)) cot xcOS x16R cotx-cos y and m= LimxFor a > 0, let = Limax then-+ax-(A)is always greater than 'm' for all values of a >0(B) 'is always greater than 'm' only when a 21(C) 'e is always greater than 'm' for all values of 'a' satisfying a > e(D) e'+ m 0awepowivnaar noe s1021lauspo

(1)/(1-cotx)

Evaluate intdx/(1+cotx)

intdx/(1+cotx)