Home
Class 11
MATHS
e^(2x) sin 3x...

`e^(2x) sin 3x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = e^{2x} \sin(3x) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative of their product is given by: \[ \frac{d}{dx}(u \cdot v) = u'v + uv' \] ### Step-by-step solution: 1. **Identify the functions**: Let \( u = e^{2x} \) and \( v = \sin(3x) \). 2. **Differentiate \( u \)**: To differentiate \( u = e^{2x} \), we apply the chain rule: \[ u' = \frac{d}{dx}(e^{2x}) = e^{2x} \cdot \frac{d}{dx}(2x) = e^{2x} \cdot 2 = 2e^{2x} \] 3. **Differentiate \( v \)**: To differentiate \( v = \sin(3x) \), we again use the chain rule: \[ v' = \frac{d}{dx}(\sin(3x)) = \cos(3x) \cdot \frac{d}{dx}(3x) = \cos(3x) \cdot 3 = 3\cos(3x) \] 4. **Apply the product rule**: Now, we can apply the product rule: \[ \frac{dy}{dx} = u'v + uv' = (2e^{2x}) \sin(3x) + (e^{2x})(3\cos(3x)) \] 5. **Combine the terms**: Factor out \( e^{2x} \): \[ \frac{dy}{dx} = e^{2x}(2\sin(3x) + 3\cos(3x)) \] ### Final answer: Thus, the derivative of \( y = e^{2x} \sin(3x) \) is: \[ \frac{dy}{dx} = e^{2x}(2\sin(3x) + 3\cos(3x)) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions e^(2x)sin x

int e^(2x) sin x dx

e^(-2x)sin 4 x

if y=e^(2x)sin3x then find (dy)/(dx)

lim_(x rarr0)(3^(5x)-e^(2x))/(sin3x)

Examine the continuity of the following function at given points f(x)=(e^(5x)-e^(2x))/(sin3x) for x!=0 and =1 for x=0} at x=0

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=(e^(5x)-e^(2x))/(sin3x)",", "for" x ne0),(=1",", "for" x=0):}}at x=0.

Delta (x) = det [[sin2x, e ^ (x) sin x + x cos x, sin x + x ^ (2) cos xcos x + sin x, e ^ (x) + x, 1 + x ^ ( 2) e ^ (x) cos x, e ^ (2) x, e ^ (x)]]

Delta (x) = det [[sin2x, e ^ (x) sin x + x cos x, sin x + x ^ (2) cos xcos x + sin x, e ^ (x) + x, 1 + x ^ ( 2) e ^ (x) cos x, e ^ (2) x, e ^ (x)]]

e ^ (x) sin x tan x + e ^ (x) sin x + e ^ (x) sin x sec ^ (2) x