Home
Class 11
MATHS
(e^x+e^-x)/(e^x-e^(-x))...

`(e^x+e^-x)/(e^x-e^(-x))`

Text Solution

Verified by Experts

The correct Answer is:
`(-4)/((e^(x)-e^(-x))^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A=_________ _, B=_________, C=___________

int(2)/((e^(x)+e^(-x))^(2))dx(e^(-x))/(e^(x)+e^(-x))+C(b)-(1)/(e^(x)+e^(-x))+C(c)(-1)/((e^(x)+1)^(2))+C(d)(1)/(e^(x)-e^(-x))+C

int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx

int_( then )^( If )(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B ln(9e^(2x)-4)+C

If int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B log(9e^(2x)-4)+C , then |4A|=

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is