Home
Class 11
MATHS
sqrt((1-x^(2))/(1+x^(2)))...

`sqrt((1-x^(2))/(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\frac{1 - x^2}{1 + x^2}} \), we will use the chain rule and quotient rule of differentiation. Here is the step-by-step solution: ### Step 1: Rewrite the function Let \[ y = \left( \frac{1 - x^2}{1 + x^2} \right)^{1/2} \] ### Step 2: Differentiate using the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{1 - x^2}{1 + x^2} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{1 - x^2}{1 + x^2} \right) \] ### Step 3: Differentiate the inner function using the quotient rule Let \( u = 1 - x^2 \) and \( v = 1 + x^2 \). Then, using the quotient rule: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{du}{dx} = -2x, \quad \frac{dv}{dx} = 2x \] Substituting these into the quotient rule gives: \[ \frac{d}{dx} \left( \frac{1 - x^2}{1 + x^2} \right) = \frac{(1 + x^2)(-2x) - (1 - x^2)(2x)}{(1 + x^2)^2} \] ### Step 4: Simplify the derivative Now simplifying the numerator: \[ = \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 + x^2)^2} \] \[ = \frac{-2x - 2x^3 - 2x + 2x^3}{(1 + x^2)^2} \] \[ = \frac{-4x}{(1 + x^2)^2} \] ### Step 5: Substitute back into the derivative Now substituting back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{1 - x^2}{1 + x^2} \right)^{-1/2} \cdot \frac{-4x}{(1 + x^2)^2} \] ### Step 6: Final simplification Now we can simplify: \[ = \frac{-2x}{(1 + x^2)^2 \sqrt{\frac{1 - x^2}{1 + x^2}}} \] \[ = \frac{-2x \sqrt{1 + x^2}}{(1 + x^2)^2 \sqrt{1 - x^2}} \] \[ = \frac{-2x}{(1 + x^2)^{3/2} \sqrt{1 - x^2}} \] Thus, the final result is: \[ \frac{dy}{dx} = \frac{-2x}{(1 + x^2)^{3/2} \sqrt{1 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

the derivation of tan ^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))

Range of f(x)=cos^(-1)((sqrt(1+2x^(2)))/(1+x^(2)))

Find the range of f(x)=cos^(-1)((sqrt(1+2x^(2)))/(1+x^(2)))

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

Find the greatest and the least values of the following functions on the indicated intervals : f(x) = sqrt((1-x)^(2)(1+2x^(2)))" on"[-1,1]

The value of underset(x to 0)lim (sqrt(1+x^(2))-sqrt(1-x^(2)))/(x^(2)) is

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=

If tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1-x^(2))+sqrt(1-x^(2)))}=alpha, then prove that x^(2)=sin2 alpha