Home
Class 11
MATHS
(e^(2x) + x^(3))/(cosec2x)...

`(e^(2x) + x^(3))/(cosec2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{e^{2x} + x^3}{\csc(2x)} \), we will follow these steps: ### Step 1: Rewrite the function We start by rewriting the function using the identity of cosecant: \[ y = (e^{2x} + x^3) \cdot \sin(2x) \] ### Step 2: Apply the product rule To differentiate \( y \), we will use the product rule. The product rule states that if \( y = u \cdot v \), then: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Here, let: - \( u = e^{2x} + x^3 \) - \( v = \sin(2x) \) ### Step 3: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. Differentiate \( u \): \[ \frac{du}{dx} = \frac{d}{dx}(e^{2x}) + \frac{d}{dx}(x^3) = 2e^{2x} + 3x^2 \] 2. Differentiate \( v \): \[ \frac{dv}{dx} = \frac{d}{dx}(\sin(2x)) = 2\cos(2x) \] ### Step 4: Substitute into the product rule Now substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the product rule: \[ \frac{dy}{dx} = (e^{2x} + x^3)(2\cos(2x)) + \sin(2x)(2e^{2x} + 3x^2) \] ### Step 5: Simplify the expression Now we can simplify the expression: \[ \frac{dy}{dx} = 2(e^{2x} + x^3)\cos(2x) + \sin(2x)(2e^{2x} + 3x^2) \] This is the final expression for the derivative \( \frac{dy}{dx} \). ### Final Answer \[ \frac{dy}{dx} = 2(e^{2x} + x^3)\cos(2x) + \sin(2x)(2e^{2x} + 3x^2) \] ---

To find the derivative of the function \( y = \frac{e^{2x} + x^3}{\csc(2x)} \), we will follow these steps: ### Step 1: Rewrite the function We start by rewriting the function using the identity of cosecant: \[ y = (e^{2x} + x^3) \cdot \sin(2x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Integrate : int ( sec^2x dx )/ ( cosec^2x )

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to x:

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

int(Cot^(2)x)/((cosec^(2)x+cosec x))dx

int(cot^(2)x)/((cosec^(2)x+cosec x))dx=

y = e ^ (2x) + e ^ (3x)

int (e ^ (3x) + e ^ (x)) / (e ^ (4x) -e ^ (2x) +1) dx

If int(cosec^(2)x)/((cosec x+cot x)^(9/2))dx =(cosec x-cot x)^(7/2)((1)/(alpha)+((cosec x-cot x)^(2))/(11))+C (where C is constant of integration and a in N ),then a is -