Home
Class 11
MATHS
If y=e^(x) log (sin 2x), find (dy)/(dx)....

If `y=e^(x) log (sin 2x),` find `(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
`e^(x)[2cot2x + log (sin2x)]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

y=sin^(2)(log(2x+3)), find (dy)/(dx)

If y=log sin (e^(x)+5x+8) , find (dy)/(dx).

If y=e^(log (x^(5)))," find"(dy)/(dx) .

If y= ( log sin x) (logx ) ,then (dy)/(dx)

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=e^([log (x+1)-log x])." Find" (dy)/(dx)

If y=log x^(x)+x^( log x ), find dy/dx .

if y=e^(2x)sin3x then find (dy)/(dx)

If y = log (cos e^(x)), then (dy)/(dx) is:

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =