Home
Class 11
MATHS
Find (dy)/(dx), when y = cos((1-x^(2)...

Find `(dy)/(dx)`, when
`y = cos((1-x^(2))/(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \cos\left(\frac{1 - x^2}{1 + x^2}\right)\), we will use the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate the outer function We start by differentiating the outer function, which is \(\cos(u)\), where \(u = \frac{1 - x^2}{1 + x^2}\). The derivative of \(\cos(u)\) is \(-\sin(u)\). \[ \frac{dy}{dx} = -\sin\left(\frac{1 - x^2}{1 + x^2}\right) \cdot \frac{du}{dx} \] ### Step 2: Differentiate the inner function Next, we need to find \(\frac{du}{dx}\) where \(u = \frac{1 - x^2}{1 + x^2}\). We will use the quotient rule for differentiation, which states that if \(u = \frac{f(x)}{g(x)}\), then: \[ \frac{du}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] Here, \(f(x) = 1 - x^2\) and \(g(x) = 1 + x^2\). ### Step 3: Calculate \(f'(x)\) and \(g'(x)\) Now we calculate the derivatives: - \(f'(x) = -2x\) - \(g'(x) = 2x\) ### Step 4: Apply the quotient rule Now we can apply the quotient rule: \[ \frac{du}{dx} = \frac{(-2x)(1 + x^2) - (1 - x^2)(2x)}{(1 + x^2)^2} \] ### Step 5: Simplify the expression Let's simplify the numerator: \[ = \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 + x^2)^2} \] \[ = \frac{-2x - 2x^3 - 2x + 2x^3}{(1 + x^2)^2} \] \[ = \frac{-4x}{(1 + x^2)^2} \] ### Step 6: Substitute back into the derivative Now substituting \(\frac{du}{dx}\) back into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\sin\left(\frac{1 - x^2}{1 + x^2}\right) \cdot \frac{-4x}{(1 + x^2)^2} \] \[ = \frac{4x \sin\left(\frac{1 - x^2}{1 + x^2}\right)}{(1 + x^2)^2} \] ### Final Result Thus, the final result for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{4x \sin\left(\frac{1 - x^2}{1 + x^2}\right)}{(1 + x^2)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when : y=sin((1+x^(2))/(1-x^(2)))

Find (dy)/(dx) , when: y=x^(xcosx)+((x^(2)+1)/(x^(2)-1))

find (dy)/(dx) when y=cos^(-1)(2x^(2)-1)

Find (dy)/(dx) , when: y=(xcos^(-1)x)/(sqrt(1-x^(2)))

Find (dy)/(dx), when: y=(1+x)(1+x^(2))(1+x^(4))(1+x^(6))

Find (dy)/(dx) , when: y=x^((cos^(-1)x))

Find (dy)/(dx) , when: y=(x^(2)sqrt(1+x))/((1+x^(2))^(3//2))

Find (dx)/(dy), when y=((x+1)(2x^(2)-1))/(x^(2)+1)

Find dy/dx when : y=x^(sinx-cosx)+(x^(2)-1)/(x^(2)+1)

find (dy)/(dx), when y=tan^(-1)((2x)/(1-x^(2)))