Home
Class 11
MATHS
Find (dy)/(dx), when : y=((sinx+x^(2))...

Find `(dy)/(dx)`, when :
`y=((sinx+x^(2)))/(cot 2x)`

Text Solution

Verified by Experts

The correct Answer is:
`2 (sinx + x^(2)) sec^(2) 2x+ (cosx + 2x) tan 2x`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 28D|26 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos
  • ELLIPSE

    RS AGGARWAL|Exercise EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=x^(sin2x)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx), when y=(sin x+x^(2))/(cot2x)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=(e^(x)logx)/(x^(2))

Find (dy)/(dx) , when : If y=((cos x - sin x))/((cos x + sin x)) , prove that (dy)/(dx)+y^(2)+1=0 .