Home
Class 12
MATHS
Find the equation of a straight line ...

Find the equation of a straight line in the plane ` vec r* vec n=d` which is parallel to ` vec r= vec a+lambda vec b` and passes through the foot of the perpendicular drawn from point `P( vec a)to vec rdot vec n=d(w h e r e vec ndot vec b=0)dot` a. ` vec r= vec a+((d- vec a*vec n)/(n^2))n+lambda vec b` b. ` vec r= vec a+((d- vec a* vec n)/n)n+lambda vec b` c. ` vec r= vec a+(( vec a* vec n-d)/(n^2))n+lambda vec b` d. ` vec r= vec a+(( vec a* vec n-d)/n)n+lambda vec b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec b be the foot of the perpendicular from A to the plane vec r*widehat n=d then vec b must be -

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then a. vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=3a n d| vec b|=2. Then vec r=2/3( vec a+ vec axx vec b) b. vec r=1/3( vec a+ vec axx vec b c. vec r=2/3( vec a- vec axx vec b d. vec r=1/3(- vec a+ vec axx vec b

The equation of the plane containing the lines vec r = vec (a_1) + lambda vec b and vec r = vec (a_2) + mu vec b is.............

The vector equation of the plane passing through the origin and the line of intersection of the planes vec rdot vec a=lambdaa n d vec rdot vec b=mu is a. vec rdot(lambda vec a-mu vec b)=0 b. vec rdot(lambda vec b-mu vec a)=0 c. vec rdot(lambda vec a+mu vec b)=0 d. vec rdot(lambda vec b+mu vec a)=0

The vector equation of the plane passing through the origin and the line of intersection of the planes vec rdot vec a=lambdaa n d vec rdot vec b=mu is a. vec rdot(lambda vec a-mu vec b)=0 b. vec rdot(lambda vec b-mu vec a)=0 c. vec rdot(lambda vec a+mu vec b)=0 d. vec rdot(lambda vec b+mu vec a)=0

Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot'( vec a- vec b)=8\ a n d\ | vec a|=8| vec b|