Home
Class 12
MATHS
- (a) -35 (C) Prove that the straight li...

- (a) -35 (C) Prove that the straight line y = me + c, touching the parabola y = 4a (x + a) (C) Sadh If c = am + - Subtract the (AT) cinr relative to ns-17. -1x __m

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the straight line x+y=1 touches the parabola y=x-x^(2)

Show that the line y = mx + c touches the parabola y^(2) = 4ax if c = (a)/(m) .

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The line y =m(x+a) + a/m touch the parabola y^(2)=4a(x+a) for m

Prove that the straight line y=mx+2c sqrt(-m),m in R, always touches the hyperbola xy=c^(2)