Home
Class 12
MATHS
Show that |vec(a)|vec(b)+|vec(b)|vec(a) ...

Show that `|vec(a)|vec(b)+|vec(b)|vec(a)` is perpendicular to `|vec(a)|vec(b)-|vec(b)|vec(a)` for any two nonzero vectors `vec(a)` and `vec(b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |vec(a)|vec(b)-|vec(b)|vec(a) , for any two non - zero vectors vec(a) and vec(b) .

Show that |vec a|vec b+|vec b|vec a is a perpendicular to |vec a|vec b-|vec b|vec a+|vec a ,for any two non-zero vectors vec a and vec b

Show that |vec a| vec b + |vec b| vec a , is perpendicular to |vec a| vec b - |vec b| vec a , for any two non-zero vectors vec a and vec b .

Show that | vec a| vec b+| vec b| vec a is a perpendicular to | vec a| vec b-| vec b| vec a , for any two non-zero vectors vec aa n d vec bdot

Show that | vec a| vec b+| vec b| vec a is a perpendicular to | vec a| vec b-| vec b| vec a , for any two non-zero vectors vec aa n d vec bdot

Show that |vec a|vec b + |vec b|vec a perpendicular to |vec a|vec b - |vec b|vec a , for any two non-zero vectors vec a and vec b .

Show that the vector vec(a) is perpendicular to the vector vec(b) - (vec(a).vec(b))/(|vec(a)|^(2))vec(a)

the resultant of two vectors vec(a) & vec(b) is perpendicular to vec(a) . If |vec(b)| = sqrt(2)|vec(a)| show that the resultant of 2vec(a) &vec(b) is perpendicular to vec(b) .

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :