Home
Class 12
MATHS
he minimum value of the quantity ((a^2 +...

he minimum value of the quantity `((a^2 +3a+1)(b^2 +4b +1)(c^2 +4c+1))/(abc)`, where a, b and c are positive integers, is :- (A) 125 (B) 210 (C) 60 (D) 23

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the quantity ((a^(2)+3a+1)(b^(2)+4b+1)(c^(2)+5c+1))/(abc)

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(3abc) The minimum value of , where a, b, c in R is

The minimum value of ((a^(2)+3a+1)(b^(2)+3b+1)(c^(2)3c+1))/(abc) The minimum value of,where a,b,c in R is

The minimum value of ((a^(2)+3a+1)(b^(2)+3b+1)(c^(2)3c+1))/(abc) The minimum value of,where a,b,c in R is

The minimum value of ((A^(2) +A+1) (B^(2) +B+1) (C^(2) +C+1 ))/(ABCD) where A,B,C,D gt 0 is :

The minimum value of ((A^(2)+A+1)(B^(2)+B+1)(C^(2)+C+1)(D^(2)+D+1))/(BACD) , wher A,B,C,D are positive

The minimum value of ((A^(2) +A+1) (B^(2) +B+1) (C^(2) +C+1 )(D^(2) +D+1 ))/(ABCD) where A,B,C,D gt 0 is :