Home
Class 12
MATHS
L1a n dL2 and two lines whose vector equ...

`L_1a n dL_2` and two lines whose vector equations are `L_1: vec r=lambda((costheta+sqrt(3)) hat i(sqrt(2)sintheta) hat j+(costheta-sqrt(3)) hat k)` `L_2: vec r=mu(a hat i+b hat j+c hat k)` , where `lambdaa n dmu` are scalars and `alpha` is the acute angel between `L_1a n dL_2dot` If the angel `alpha` is independent of `theta,` then the value of `alpha` is a. `pi/6` b. `pi/4` c. `pi/3` d. `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

L_1a n dL_2 are two lines whose vector equations are L_1: vec r=lambda((costheta+sqrt(3)) hat i+(sqrt(2)sintheta) hat j+(costheta-sqrt(3)) hat k) L_2: vec r=mu(a hat i+b hat j+c hat k) , where lambdaa n dmu are scalars and alpha is the acute angel between L_1a n dL_2dot If the angel alpha is independent of theta, then the value of alpha is a. pi/6 b. pi/4 c. pi/3 d. pi/2

L_1a n dL_2 are two lines whose vector equations are L_1: vec r=lambda((costheta+sqrt(3)) hat i +(sqrt(2)sintheta) hat j+(costheta-sqrt(3)) hat k) L_2: vec r=mu(a hat i+b hat j+c hat k) , where lambdaa n dmu are scalars and alpha is the acute angel between L_1a n dL_2dot If the angel alpha is independent of theta, then the value of alpha is a. pi/6 b. pi/4 c. pi/3 d. pi/2

Find the value of theta(0,pi//2) for which vectors vec a=(sintheta) hat i+(costheta) hat j a n d\ vec b= hat i-sqrt(3) hat j+2 hat k are perpendicular.

If theta is an acute angle and the vector (sintheta) hat i+(costheta) hat j is perpendicular to the vector hat i-sqrt(3) hat j ,\ t h e n\ theta= pi/6 b. pi/5 c. pi/4 d. pi/3

Find the distance between the lines l_1 and l_2 given by vec r= hat i+2 hat j-4k+lambda(2 hat i+3 hat j+6 hat k) and vec r=3 hat i+3 hat j-5k+mu(2 hat i+3 hat j+6 hat k) .

Find the angle between the following pairs of lines: -> r=lambda( hat i+ hat j+2 hat k)\ a n d\ -> r=2 hat j+mu[(sqrt(3)-1) hat i-(sqrt(3)+1) hat j+4 hat k]dot

Find the angle between the following pairs of lines: -> r=lambda( hat i+ hat j+2 hat k)\ a n d\ -> r=2 hat j+mu[(sqrt(3)-1) hat i-(sqrt(3)+1) hat j+4 hat k]dot

Determine the shortest distance between the pair of lines : vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d\ vec r=(2 hat i- hat k)+mu(2 hat i+2 hat k)dot

Find the equation of the line passing through the point hat i+ hat j- hat k and perpendicular to the lines vec r= hat i+lambda(2 hat i+ hat j-3 hat k)a n d vec r=(2 hat i+ hat j- hat k)dot